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Mathematics as of 1700

Those few things having been considered, the whole matter is
reduced to pure geometry, which is the one aim of physics
and mechanics. G. W. LEIBNIZ

1. The Transformation of Mathematics

At the opening of the seventeenth century Galileo still found it necessary to
argue with the past. By the end of the century, mathematics had undergone
such extensive and radical changes that no one could fail to recognize the
arrival of a new era.

The European mathematicians produced far more between about 1550
and 1700 than the Greeks had in roughly ten centuries. This is readily
explained by the fact that, whereas mathematics in Greece was pursued by
only a handful of men, in Europe the spread of education, though by no
means universal, promoted the development of mathematicians in England,
France, Germany, Holland, and Italy. The invention of printing gave wide
access not only to the Greek works but to the results of the Europeans them-
selves, which, now readily available, served to stimulate new thoughts.

But the genius of the century is not evidenced solely by the expansion
of activity. The variety of new fields opened up in this brief period is im-
pressive. The rise of algebra as a science (because the use of literal coefficients
permitted a measure of proof) as well as the vast expansion of its methods
and theory, the beginnings of projective geometry and the theory of prob-
ability, analytic geometry, the function concept, and above all the calculus
were major innovations, each destined to dwarf the one extensive accom-
plishment of the Greeks—Euclidean geometry.

Beyond the quantitative expansion and the new avenues of exploration
was the complete reversal of the roles of algebra and geometry. The Greeks
had favored geometry because it was the only way they could achieve rigor;
and even in the seventeenth century, mathematicians felt obliged to justify
algebraic methods with geometrical proofs. One could say that up to 1600
the body of mathematics was geometrical, with some algebraic and trigono-
metric appendages. After the work of Descartes, Fermat, and Wallis, algebra
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became not only an effective methodology for its own ends but also the
superior approach to the solution of geometric problems. The greater effec-
tiveness of analytical methods in the calculus decided the competition, and
algebra became the dominant substance of mathematics.

It was Wallis and Newton who saw clearly that algebra provided the
superior methodology. Unlike Descartes, who regarded algebra as just tech-
nique, Wallis and Newton realized that it was vital subject matter. The work
of Desargues, Pascal, and La Hire was depreciated and forgotten, and the
geometric methods of Cavalieri, Gregory of Saint Vincent, Huygens, and
Barrow were superseded. Pure geometry was eclipsed for about a hundred
years, becoming at best an interpretation of algebra and a guide to algebraic
thinking through coordinate geometry. It is true that excessive reverence for
Newton’s geometrical work in the Principia, reinforced by the enmity against
the Continental mathematicians engendered by the dispute between Newton
and Leibniz, caused the English mathematicians to persist in the geometrical
development of the calculus. But their contributions were trivial compared
to what the Continentals were able to achieve using the analytical approach.
What was evident by 1700 was explicitly stated by no less an authority than
Euler, who, in his Introductio in Analysin Infinitorum (1748), praises algebra as
far superior to the synthetic methods of the Greeks.

It was with great reluctance that mathematicians abandoned the geo-
metric approach. According to Henry Pemberton (1694-1771), who edited
the third edition of Newton’s Principia, Newton not only constantly expressed
great admiration for the geometers of Greece but censured himself for not
following them more closely than he did. In a letter to David Gregory
(1661-1708), a nephew of James Gregory, Newton remarked that “algebra
is the analysis of the bunglers in mathematics.” But his own Arithmetica
Universalis of 1707 did as much as any single work to establish the supremacy
of algebra. Here he set up arithmetic and algebra as the basic science,
allowing geometry only where it made demonstrations easier. Leibniz, too,
noted the growing dominance of algebra and felt obliged to say, in an un-
published essay,* “Often the geometers could demonstrate in a few words
what is very lengthy in the calculus . .. the view of algebra is assured, but it
is not better.” .

Another, more subtle, change in the nature of mathematics had been
unconsciously accepted by the masters. Up to 1550 the concepts of mathe-
matics were immediate idealizations of or abstractions from experience. By
that time negative and irrational numbers had made their appearance and
were gradually gaining acceptance. When, in addition, complex numbers,
an extensive algebra employing literal coefficients, and the notions of deriva-
tive and integral entered mathematics, the subject became dominated by

1. Couturat, L.: Opuscules et fragments inédits de Leibniz, 1903, reprinted by Georg Olms,
1961, p. 181. ;
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concepts derived from the recesses of human minds. The notion of an
instantaneous rate of change, in particular, though of course having some
intuitive base in the physical phenomenon of velocity, is nevertheless far
more of an intellectual construct and is also an entirely different contribution
qualitatively than the mathematical triangle. Beyond these ideas, infinitely
large quantities, which the Greeks had studiously avoided, and infinitely
small ones, which the Greeks had skillfully circumvented, had to be contended
with..

In other words, mathematicians were contributing concepts, rather than
abstracting ideas from the real world. Nevertheless, these concepts were
useful in physical investigations because (with the exception of complex
numbers, which had yet to prove their worth) they had some ties to physical
reality. Of course the Europeans were uneasy about the new types of num-
bers and the calculus notions without really discerning the cause of their
concern. Yet as these concepts proved more and more useful in applications,
they were at first grudgingly and later passively accepted. Familiarity bred
not contempt but acceptability and even naturalness. After 1700, more and
more notions, further removed from nature and springing full-blown from
human minds, were to enter mathematics and be accepted with fewer
qualms. For the genesis of its ideas mathematics gradually turned from the
sensory to the intellectual faculties.

The incorporation of the calculus into the body of mathematics effected
another change, in the very concept of mathematics, that subverted the ideal
fashioned by the classical Greeks. We have already noted that the rise of
algebra and the calculus introduced the problem of the logical foundations
of these portions of mathematics and that this problem was not resolved.
Throughout the century some mathematicians were upset by the abandon-
ment of proof in the deductive sense, but their protests were drowned in the
expanding content and use of algebra and the calculus; by the end of the
century mathematicians had virtually dropped the requirement of clearly
defined concepts and deductive proof. Rigorous axiomatic construction gave
way to induction from particular examples, intuitive insights, loose geo-
metrical evidence, and physical arguments. Since deductive proof had been
the distinguishing feature of mathematics, the mathematicians were thus
abandoning the hallmark of their subject.

In retrospect it is easy to see why they were forced into this position. As
long as mathematicians derived their concepts from immediate experience,
it was feasible to define the concepts and select the necessary axioms—
though, at that, the logical basis for the theory of the integers that Euclid
presented in Books VII to IX of the Elements was woefully deficient. But as
they introduced concepts that no longer idealized immediate experiences,
such as the irrational, negative, and complex numbers and the derivative
and integral, they failed to recognize that these concepts were different in




