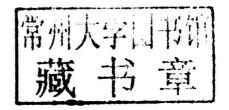
Strategies and Tactics in Organic Synthesis

Edited by

MICHAEL HARMATA

Volume 11


Strategies and Tactics in Organic Synthesis

Volume 11

Edited by

Michael Harmata

University of Missouri - Columbia

Academic Press is an imprint of Elsevier
125, London Wall, EC2Y 5AS
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
225 Wyman Street, Waltham, MA 02451, USA
525 B Street, Suite 1800, San Diego, CA 92101-4495, USA

First edition 2015

© 2015 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, editors, or editorial board members assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-08-100023-6

ISSN: 1874-6004

For information on all Academic Press publications visit our web site at store.elsevier.com

Printed in the United States of America

Strategies and Tactics in Organic Synthesis

Volume 11

FDITORIAL BOARD

Professor Erik I. Sorensen

Department of Chemistry Frick Laboratory Princeton University Washington Road Princeton, NJ, USA

Professor Dirk Trauner

Department Chemie und Biochemie Ludwig-Maximilians-Universität München Butenandtstr. 5-13, Haus F München, Germany

Professor Frederick G. West

Department of Chemistry
University of Alberta
Gunning-Lemieux Chemistry Centre E3-43
Edmonton, Alberta
Canada

Professor Craig M. Williams

School of Chemistry and Molecular Biosciences University of Queensland Brisbane Queensland, Australia

Professor Pauline Chiu

Department of Chemistry
The University of Hong Kong
Pokfulam Road, Hong Kong

Dr. Jean-Suffert

Université de Strasbourg
Faculté de Pharmacie
Laboratoire d'Innovation Thérapeutique
Equipe SOMP
(UMR 7200 CNRS/UDS)
Illkirch Cedex, France

Life has a way of confusing us, Blessing and bruising us. Drink, l'chaim, to life!

from Fiddler on the Roof

Contributors

- Numbers in Parentheses indicate the pages on which the author's contributions begin.
- Aaron Aponick (1), Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida, USA
- Janick Ardisson (51), Faculté de Pharmacie, CNRS UMR 8638, Université Paris Descartes, Paris Cedex, France
- Martin G. Banwell (29), Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory, Australia
- **Jean-François Betzer** (51), Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
- Nicolas Blanchard (85), Laboratoire de Chimie Moléculaire, Université de Strasbourg, Strasbourg Cedex, France
- Margaret A. Brimble (119), School of Chemical Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Lise Bréthous (85), Laboratoire de Chimie Moléculaire, Université de Strasbourg, Strasbourg Cedex, France
- **Joshua N. Buckler** (29), Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory, Australia
- Barry B. Butler Jr. (1), Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida, USA
- Lisa Candish (309), School of Chemistry, Monash University, Melbourne, Victoria, Australia
- Virginie Casarotto (85), Laboratoire de Chimie Moléculaire, Université de Strasbourg, Strasbourg Cedex, France
- Anne-Caroline Chany (85), Laboratoire de Chimie Moléculaire, Université de Strasbourg, Strasbourg Cedex, France
- **Ke Chen** (171), Chemical Development, Bristol-Myers Squibb Co., New Brunswick, New Jersey, USA
- **Brenton DeBoef** (151), Department of Chemistry, University of Rhode Island, Kingston, Rhode Island, USA

xvi Contributors

Cristian Draghici (335), Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona, USA

- Martin Eastgate (171), Chemical Development, Bristol-Myers Squibb Co., New Brunswick, New Jersey, USA
- **Daniel. P. Furkert** (119), School of Chemical Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- **Nicolas Girard** (235), Faculté de Pharmacie, Laboratoire d'Innovation Thérapeutique, CNRS-Université de Strasbourg, Illkirch, France
- Andrew M. Harned* (253), Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Paul A. Hume (119), School of Chemical Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Colin J. Jackson (29), Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory, Australia
- **Ping Lan** (29), Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory, Australia
- **David W. Lupton** (309), School of Chemistry, Monash University, Melbourne, Victoria, Australia
- **Xinghua Ma** (29), Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory, Australia
- Eliška Matoušová (29), Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Praha, Czech Republic
- Jon T. Njardarson (335), Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona, USA
- Jeremy Nugent (29), Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory, Australia
- Yong Qin (377), West China School of Pharmacy, Sichuan University, Chengdu, PR China
- Christina Risatti (171), Chemical Development, Bristol-Myers Squibb Co., New Brunswick, New Jersey, USA
- Sarah Saint-Auret (85), Laboratoire de Chimie Moléculaire, Université de Strasbourg, Strasbourg Cedex, France
- Hao Song (377), West China School of Pharmacy, Sichuan University, Chengdu, PR China
- **Cédric Tresse** (85), Laboratoire de Chimie Moléculaire, Université de Strasbourg, Strasbourg Cedex, France

^{*}Present Address: Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA

Kelly A. Volp[†] (253), Department of Chemistry, University of Minnesota, Minnesota, USA

Dan Zhang (377), West China School of Pharmacy, Sichuan University, Chengdu, PR China

[†]Present Address: 3M, Corporate Research Materials Laboratory, St. Paul, Minnesota, USA

Preface

Given that I have a propensity for dedicating books in this series to people who have died, mostly because so many good folks have a propensity for dying, I decided to move in a different direction for this volume. In the past year, we have had storms, plane crashes, miscellaneous disasters, and the especially painful display of people who murder using the reason or excuse that they are doing the work of a god. Plainly said, it sucks. But, I remember from forays into philosophy in my youth something mentioned by Pierre Teilhard de Chardin: "No matter what reactions we may have to current events, we ought to first reaffirm a robust faith in the destiny of man." Easy for him to say! Still, science and labs do not insulate us from the world. Like it or not, we are part of the whole ball of wax. There's a lot that has to be done to keep it rolling, in science and elsewhere. To life!

It is always a pleasure to edit these volumes, primarily because I get to work with many wonderful colleagues and rediscover their work in a very up-close way. Indeed, I say rediscover as I suffer from OIDS (Offspring-Induced Dementia Syndrome) and have a predilection for forgetting stuff I didn't used to forget. Though I am probably preaching to the choir, I think it is always important to emphasize that synthetic organic chemistry, whether focused on preparing a specific target(s) or developing new methodology, is the epitome of human activity in terms of both intellect and passion. Sing that from the mountaintops and give high praise to all those involved in such adventures!

I must, as per usual, thank Elsevier for their continued commitment to this series, through thick and thin. My special thanks to Derek Coleman and Susan Dennis for their help and support over the years.

Finally, I want to express my gratitude to the Editorial Board. These colleagues are the wonderful folks who help me tremendously in securing authors for this publication. Their being part of the "team" is an asset that I truly value. I look forward to many more years of work with them.

MICHAEL HARMATA

Contents

	ace	utors		xix
1.			tarin A: Spiroketalization Methods and Synthesis Butler Jr. and Aaron Aponick	1
	1	Intro	oduction	1
	2		ution of Au- and Pd-Catalyzed Spiroketalization Methods	3
	_	2.1	Au-Catalyzed Allylic Substitution	3
		2.2	Au-Catalyzed Spiroketalization of Propargylic Triols and	
			Acetonides	4
		2.3	Pd-Catalyzed Spiroketalization: An Interrupted	
			Allylic Substitution	7
	3	Aco	rtatarin A and Related Natural Products	8
		3.1	Introduction	8
			Biological Activity	9
		3.3	The state of the s	11
			First Synthesis of Acortatarins A and B	12
		3.5		16
		3.6	Stereoselective Glycal Cyclization	19
	4		hetic Efforts via Pd-Catalyzed Spiroketalization	20
		4.1	Retrosynthesis	21
		4.2		22
		4.3	Spiroketalization and Completion of the Synthesis	23
	_	-	of Acortatarin A	25
	5		clusion	25
		feren	vledgments	25
	Ke	ieren	ices	23
2.	G In	alan hibi artin	ng New Syntheses of the Alkaloid thamine, a Potent and Clinically Deployed tor of Acetylcholine Esterase G. Banwell, Joshua N. Buckler, Colin J. Jackson, n, Xinghua Ma, Eliška Matoušová, and Jeremy Nugent	29
	1	Inte	oduction	29
	2		lies on the Synthesis of Galanthamine—A Potted History	31

	3	A First-Generation Chemoenzymatic Synthesis	
	4	of (+)-Galanthamine	33
	4	Total Syntheses of Members of the Ribisin Class of Neurologically Active Natural Product Inspire	
		a Second-Generation Chemoenzymatic Approach	
		to (+)-Galanthamine	2.7
		4.1 The Ribisins	37
		4.2 A Second-Generation Chemoenzymatic Approach	37
		to the Synthesis of (+)-Galanthamine	10
	5	An Abortive, Radical-Based Approach to (±)-Galanthamine	40 42
	6	Doing Things the Hard Way—De Novo Construction	42
	U	of the Aromatic C-Ring as a Focal Point	44
	7	Conclusions	47
		cknowledgments	48
		eferences	48
	NC	nerences	40
3.		iscodermolide: Total Synthesis of Natural	
	Pr	oduct and Analogues	51
	Jea	an-François Betzer and Janick Ardisson	
	1	Introduction	51
	2	Synthetic Approach and Synthetic Methods Development	53
		2.1 Reactivity of an α-Oxygenated Crotyltitanium	54
		2.2 Reactivity of a Z-O-Enecarbamate Group	57
		2.3 1,2-Dyotropic Rearrangement of Dihydrofuran	59
	3	Total Synthesis of (+)-DDM	62
		3.1 Strategic Considerations	62
		3.2 Preparation of C8–C14 Subunit B	62
		3.3 Preparation of C15–C24 Subunit A	66
		3.4 Preparation of C1–C7 Subunit C	67
		3.5 Completion of Total Synthesis of DDM	68
	4	Conception, Synthesis, and Biological Evaluation	
		of DDM Analogues	69
		4.1 Conformation of DDM and Conception of Analogues	69
		4.2 Modification of Terminal Diene C15–C24 Part	73
		4.3 Modification of the Trisubstituted C13–C14 Double Bond	75
		4.4 Modification of C1–C5 Lactone Part	76
		4.5 Biological Evaluation of Synthetic Analogues	77
		Conclusion	79
		knowledgments	79
	Re	ferences	79
4.	Α	Walk Across Africa with Captain Grant: Exploring	
	M	ycobacterium ulcerans Infection with Mycolactone	
	Ar	nalogs	85
	Nic	colas Blanchard, Anne-Caroline Chany, Cédric Tresse,	
	Vir	ginie Casarotto, Lise Bréthous, and Sarah Saint-Auret	
		Introduction	85
	4.6	111111111111111111111111111111111111111	73.3

Contents ix

	2	Synthetic Strategy of the Mycolactone A/B Analogs	90
		2.1 Retrosynthetic Analysis	90
		2.2 Synthesis of the C1–C20 Fragment	91
		2.3 Synthesis of the C1′–C16′ Fragment	98
		2.4 Completion of the Synthesis and Overview	
		of the Panel of Analogs	106
	3	Exploration of the Biology Induced by Mycolactone	
	9	A/B Analogs	111
	4	Conclusions and Future Prospects	113
		knowledgments	116
		ferences	116
5.	To	otal Synthesis of the Fungal Metabolite Virgatolide B	119
		ul A. Hume, Daniel. P. Furkert, and Margaret A. Brimble	
	1	Introduction	119
	2	First Synthetic Strategy	123
	_	2.1 First-Generation Retrosynthetic Analysis	123
		2.2 Suzuki Cross-Coupling	124
		2.3 Diastereoselective Aldol Reaction	126
		2.4 Attempted Spiroketalization	127
	3	Second Synthetic Strategy	130
	3	3.1 Second-Generation Retrosynthetic Analysis	130
		3.2 Suzuki Cross-Coupling	132
		3.3 Aldol Reaction	135
		3.4 Spiroketalization	137
	4	Total Synthesis of Virgatolide B	139
	4	4.1 Final Retrosynthetic Analysis	139
		4.2 Asymmetric Dihydroxylation and Iodination	142
		4.3 Carboalkoxylation	144
			146
	-	4.4 Final Elaboration to Virgatolide B Conclusion	147
	5		149
		cknowledgments eferences	149
		1994	
6.	TI	he Role of Design, Serendipity, and Scientific	
	C	ompetition in the Development of Oxidative	4 = 4
	C	oupling Reactions	151
	Br	renton DeBoef	
	1	Introduction	152
	2	Synthesis of Biaryls via Oxidative Cross-Coupling	153
		2.1 Initial Attempts at Oxidative Amination: Scooped Before	
		We Even Started	153
		2.2 Serendipitous Discovery	154
		2.3 Lead Development and Optimization	155
		2.4 Scooped Again	157
	3	Controlling Regioselectivity for Indole Substrates	157
	_	3.1 Oxidant-Controlled Regioselectivity	157

X

		3.2 "pH" Adjusted Conditions for N-Alkylindoles	158
		3.3 Application to the Synthesis of a Botulinum Neurotoxin	
		Inhibitor	160
	4	Mechanism of C-H Palladation in Oxidative Coupling	
		Reactions	161
		4.1 CMD Pathways for Both C–H Palladations	161
		4.2 Pd(II)/Pd(IV) for Reactions Oxidized by H ₄ PMo ₁₁ VO ₄₀ /O ₂	162
	5	Returning to Oxidative Amination	162
		5.1 Design of a I(III)-Mediated C–H Amination	
		and the Continuing Role of Serendipity	163
		5.2 Competition and Differing Mechanistic Interpretations	164
		5.3 Second-Generation Oxidative Aminations: Regioselectivity	
		as a Function of Mechanism	166
	6	Conclusion	168
		knowledgements	168
	Re	ferences	169
_	_		
1.	O	vercoming Electronics with Strategy: Development	
	of	an Efficient Synthesis of the HIV Attachment	4 = 4
	In	hibitor Prodrug, BMS-663068	171
	Ke	Chen, Christina Risatti, and Martin Eastgate	
	1	Introduction	171
		1.1 Original Route	173
		1.2 Endgame Modification	178
	2	Route Selection	182
	-	2.1 Assembly of 6-Azaindole Core	182
		2.2 Installation of the Triazole: Overcoming Reactivity	. 02
		and Regioselectivity Issues	193
		2.3 Introduction of the C3 Side Chain	202
		2.4 Assessment	208
		2.5 Endgame: Isolation of 2 and Prodrug Installation	211
	3	Lessons Discovered During Process Development	215
		3.1 Azaindole Core: Aromatization and Methoxylation	217
		3.2 C7 Bromination: PyBrop and Reissert	219
		3.3 Triazole Incorporation: Ullmann Coupling	224
	4	Conclusion	229
	Ac	knowledgments	230
		ferences	231
8.	Sy	nthesis of Alkaloids Containing a Quinolizidine	
	Co	ore by Means of Strategies Based on a	
	Hy	ydroformylation Reaction	235
	Nic	colas Girard	
	1	Introduction	235
	2	Aza-Sakurai–Hosomi Reaction Associated	233
	_	with Hydroformylation	238