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Preface

A decade ago a book on optical microfibers and nanofibers could be hardly
foreseen. In 2003, one of the authors (L.T.), in collaboration with scientists
from Harvard and Zhejiang University, published an intriguing paper in Nature
on the low-loss waveguiding of silica nanofibers. This paper introduced a new
vision of micro/nanofibers as basic elements for miniature photonic devices
and initiated numerous scientific publications on the topic of this book.

At first glance, microfiber-based photonic technology seems to be a reverse
step from the lithographic photonic technology, just like wired circuits in
relation to printed-in circuits in electronics. However, there are at least two
important advantages of microfibers over lithographically fabricated wave-
guides: significantly smaller losses for a given index contrast and the potential
ability for micro-assembly in three dimensions. These advantages could make
possible the creation of micro/nanofiber devices that are considerably more
compact and less lossy than devices fabricated lithographically. Furthermore,
some microfiber-based devices possess unique functionalities, which are not
possible or much harder to achieve by other means.

Nowadays research on optical micro/nanofibers is growing rapidly. The au-
thors attempted to write a fairly comprehensive introduction to micro/nanofi-
ber optical properties, fabrication methods and applications. The book will
be useful for scientists and engineers who want to learn more about very thin
- subwavelength diameter — optical microfibers and, eventually, to be engaged
in microfiber photonics research. In particular, the authors hope that the con-
tents of the book will attract students and stimulate their innovative ideas in
this fascinating field of optics.

L.T. would like to acknowledge a number of his colleagues and students at
both Zhejiang University in Hangzhou and Harvard University in Cambridge,
MA, USA, for their direct or indirect help in micro/nanofiber research and
the writing of this book. Special thanks to Professor Eric Mazur of Harvard
University for his indispensable support and advice. Special thanks are also
extended to Jingyi Lou, Rafael R. Gattass, Qing Yang, Guillaume Vienne,
Jian Fu, Yuhang Li, Xiaoshun Jiang, Zhe Ma, Xin Guo, Shanshan Wang,
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Fuxing Gu, Zhifang Hu, and Keji Huang for their great help and contribution
to the work.

M.S. would like to acknowledge the creative “Bell Labs” atmosphere at
the OFS Laboratories (formerly the Optical Fiber Research Department of
Bell Laboratories), which stimulated his research in micro/nanofibers and the
work on this book. Special thanks are extended to his present and former Bell
Labs/OFS Labs colleagues David DiGiovanni, Ben Eggleton, Yuri Dulashko,
John Fini, Michael Fishteyn, Samir Ghalmi, Siddharth Ramachandran, Paul
Westbrook and Andrew Yablon for the fruitful discussions and consultations.

The authors
Apri] 2009
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‘Introduction

In the past 30 years, optical fibers with diameters larger than the wavelength
of guided light have found wide applications including optical communication,
sensing, power delivery and nonlinear optics!!~¢. For example, by transmis-
sion of light through total internal reflection in optical fibers, the power of
light has been sent to travel across the sea for telecommunications(®'?, to
creep into buildings for safety monitoring(34, to puncture tissues for laser
surgeryls], as well as many other applications ranging from illumination and
imaging to astronomical research!”:8. Recent advances in nanotechnology and
the increasing demand for faster response, smaller footprint, higher sensitivity
and lower power consumption have, however, spurred efforts for the miniatur-
ization of optical fibers and fiber-optic devices!®~1%, Therefore, an important
motivation for fabricating subwavelength-diameter optical fibers is their po-
tential usefulness as building blocks in future micro- or nanometer-scale pho-
tonic components or devices and as tools for mesoscopic optics research. Also,
it is always interesting to guide light and watch how it works on those scales
that have not been tried yet.

1.1 A Brief History of Micro- and Nanofibers

The history of the guided transmission of light can be traced back to the 19"
century, when Daniel Colladon and John Tyndall directed beams of light at
the path of water(”), in which light was confined by the internal reflection
due to the refractive index change at the water-air interface. In 1880, William
Wheeling patented an invention for piping light through pipes relying on mir-
ror reflection(!!). In this idea, light was redirected, branched and delivered
using a pipe in the same way that water is poured into and carried along a
pipe. On the other hand, shortly after Wheeling’s light pipe, Charles Vernon
Boys, a British physicist, reported drawing very thin glass fibers from molten
minerals using flying arrows in 1887(!2], which might represent the first writ-
ten record of taper drawing glass fibers with micro- or nanoscale diameters.
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These fibers could be thinner than one micrometer, and were mentioned as
“the finest threads” of glasses. Several years later, the approach for drawing
these kinds of thin fibers was developed into one of the “laboratory arts”, as
documented in the book On Laboratory Arts by Richard Threlfall’3l. How-
ever, at that time these “finest threads”, here we call them micro- or nanofibers
(MNFs), were not prepared for light transmission, but for mechanical appli-
cations such as springs for galvanometers due to their high uniformity and
excellent elasticity!?). Also, due to their small dimensions, it was difficult
to precisely determine the thickness of the fiber when its value went below
the wavelength of visible light. To the best of the authors’ knowledge, one
of the earliest examples of optical guiding in MNFs was reported in 1959 by
Narinder S. Kapany, in which a fiber bundle consisting of numerous micro-
and submicrometer-diameter fibers was used for transmission of images!14.
In 1960 Theodore Maiman invented the first laser'®!, and shortly afterwards
Charles Kao and George Hockham proposed the possibility of achieving low
optical loss in high-purity glasses in 1966[16!, which greatly advanced the es-
tablishment of fiber optics for the optical communications industry.

From the 1970’s, along with a thriving fiber optics research industry, mi-
crofibers tapered from standard glass fibers (usually mentioned as fiber ta-
pers or tapered fibers with waist diameters of several to tens of micrometers)
started to play their role as optical waveguides!!’~22, Based on these mi-
crofibers, a number of possible applications including optical couplers(23—25],
filters(26:27] | sensors?8:29], evanescent field amplification®® and supercontin-
uum generation®!! were demonstrated. In 1999, a theoretical work on mi-
crofibers with subwavelength diameters was reported by J. Bures and R.
Ghosh!32)| based on theoretical calculation. They predicted the enhanced
power density of the evanescent field in the vicinity of the fiber, which might
be used in atomic mirrors.

In 2003, L. Tong and co-authors experimentally demonstrated low-loss
optical waveguiding in MNFs with diameters far below the wavelength of
the guided light®3], which renewed research interests in optical MNFs as
potential building blocks for miniaturized optical components and devices.
A few years later, a number of works on the fabrication and/or prop-
erties of subwavelength-diameter MNFs were reported34-62l and a vari-
ety of MNF-based components or devices, ranging from resonators!63-73}
interferometers367  filters("™~77) and lasers!”®8l to sensors!®?2—9! were
demounstrated or proposed, together with many other MNF-based applica-
tions in nonlinear optics®®—1%! and atom optics107—115,

Besides the above-mentioned glass MNFs, there are a number of other
free-standing one-dimensional fiber or wire-like micro- or nanostructures,
ranging from crystalline whiskers to semiconductor nanowires and polymer
MNFsl116-125] that have been extensively investigated and show potential
for optical wave guiding. Among these structures, physically drawn polymer
MNFs, although they were not initially targeted for light guidance, exhibit
similar properties as glass MNF's regarding extraordinary uniformity and long



1.2 Concepts of MNFs and the Scope of this Book 3

length for low-loss optical waveguiding26—13!], and are thus within the scope
of this book.

~ 1.2 Concepts of MNF's and the Scope of this Book

To introduce the concept of an MNF, it is helpful to compare it with the
principles of a standard glass fiber. Shown in Fig. 1.1 is a cross-section view
of a typical step-index-profile optical fiber, which consists of two parts (the
protective buffer layer is not shown here): a solid cylindrical core, surrounded
by a cladding with relatively low refractive index. Depending on various ap-
plications, the diameter of the fiber ranges from tens of micrometer (e.g., for
fiber-optic sensing) to larger than one millimeters (e.g., for laser power deliv-
ery), and correspondingly the core diameter ranges from several micrometers
to hundreds of micrometers. In a standard single-mode fiber for optical com-
munications, e.g., Corning SMF28, the fiber and core diameters are 9 and
125 pum, respectively. As illustrated in Fig. 1.2(a), in the view of ray optics,
the light conducted along the fiber is confined and guided inside the fiber by
means of total internal reflection, as has been well depicted in many textbooks
when introducing fiber optics.

High-index core

\
&

Cladding

Fig. 1.1. Cross-section view of a standard optical fiber.

It is noticeable that in the reflection region where light hits the interface,
a certain fraction of light penetrates the boundary of the high-index core,
propagates as an evanescent field in the cladding, and finally comes back
into the fiber core, forming the reflected ray with a slight shift in the axial
direction known as the Goos-Hanchen shift132:133], When the diameter of the
core decreases, the light penetrates the boundary more frequently, and the
probability of propagation outside the core (as evanescent waves) increases,
as shown in Fig. 1.2(b).

When the core diameter goes below the wavelength of the light, a con-
siderable fraction of the power of the light propagates outside the core, as
illustrated in Fig. 1.3. In such a case, the diameter of the fiber core is not
thick enough for generating a steady-state electromagnetic field through the
interference of reflected light rays, which means that ray optics (as depicted
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(b

Fig. 1.2. Optical waveguiding in a standard optical fiber relying on internal total
reflection with (a) relatively large and (b) relatively small core diameters.

Fig. 1.3. Optical waveguiding in a micro- or nanofiber with core diameter below
the wavelength of the propagating light. '

in Fig. 1.2) is no longer applied, and the light ray should be treated as an elec-
tromagnetic field. For a fiber with a core diameter below the wavelength of the
light, a high index-contrast between the core and the cladding is desired for
obtaining a certain degree of optical confinement34134}, which is required for
light waveguiding in practical applications of these sub-wavelength-diameter
optical fibers. Since the refractive index of an optical fiber (mostly made of
silica) is not high, low-index media (or environment) such as a vacuum, air,
water and polymers are usually used as claddings.
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Similar to the top-down drawing technique for conventional fiber fabrica-
tion, the MNFs are usually fabricated by physically drawing viscous melts
or solutions, as illustrated in Fig. 1.4. Usually, materials used for drawing
MNFs are glass fibers, bulk glasses or polymers!33:35-37,43—48,126-131] {yhen
.the starting material is partially melted by heating or dissolved by solvents,
it is possible to obtain appropriate viscosity for MNF drawing at a certain
area, and high-quality MNFs with diameters down to 30 nm can be obtained
when a proper drawing speed is applied. Compared with many other tech-
niques that have been used for MNF or other one-dimensional nanostructure
fabrication[116-120] 5 physical drawing technique yields MNFs with unpar-
alleled uniformities regarding sidewall smoothness and diameter uniformity.
The excellent uniformity of the MNF does not only enable low optical wave-
guiding loss, but also bestows the MNF with high mechanical strength and
flexibility. For example, Fig. 1.5(a) gives an SEM image of a 450-nm-diameter
silica MNF (supported on a coated silicon wafer), clearly showing the extraor-
dinary uniformity of the fiber. Fig. 1.5(b) gives an SEM image of a knotted
500-nm-diameter silica MINF. The fiber was first knotted to a size of about 50
pm under an optical microscope, and then transferred onto the sidewall of a
human hair. No breakage was observed under these micromanipulations, in-
dicating the high mechanical strength and flexibility of the taper-drawn glass
MNF.

Taper drawn MNFsnt

Melted by heating

Fiber/ Glass/Polymer [

Dissolved by solvent

/7
Appropriate viscosity for
drawing at certain area

Fig. 1.4. Schematic illustration of physical drawing MNF's.

Fig. 1.5. SEM images of typical MNFs. (a) A 450-nm-diameter silica MNF placed
on a coated silicon wafer. (b) A knotted 500-nm-diameter silica MNF placed on a
human hair.
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Due to its tiny endface, the lens-focus and butt-coupling methods for light
launching in the conventional fiber are not applicable to the MNF. Instead,
taper-squeeze or evanescent coupling is usually employed due to its high effi-
ciency and convenience for managing light in subwavelength-diameter fibers.
As shown in Fig. 1.6, for MNFs directly drawn from the starting fiber, taper
squeeze is a simple approach for squeezing light from the thick fiber into the
thin MNF; while for freestanding MNFs, evanescent coupling between two
closely contacting MNFs has proved efficient and convenient for sending light
from the launching fiber to the target MNF[33,41,46,56]

MNF
Taper-squesze = S —
Squeeze light using the taper
Launching MNF fhanowire
Evanescent coupling —— Target MNF
Coupling area

Fig. 1.6. Taper-focus and evanescent coupling approaches for optical launching of
MNFs.

Compared with that in a conventional optical fiber, the high index contrast
and subwavelength diameter of the MNF make it possible to guide light with a
number of interesting properties, such as tight optical confinement[®¥, a high
fraction of evanescent fields®¥!, manageable large waveguide dispersion34:52]
field enhancement®? and low optical loss through sharp bends!4!l, making
the MNF highly potential for a variety of photonics applications. For exam-
ple, when guiding a 633-nm-wavelength light, a 450-nm-diameter silica. MNF
confining 80% power inside the fiber core (see Fig. 1.7(a)), makes it possible
to guide the light through a 5-pm-radius bend with negligible bending loss/4!!,
which is desired for the miniaturization of optical circuits and components.
When the fiber diameter decreases to 200 nm, more than 90% power moves
out of the fiber and is guided as evanescent waves (Fig. 1.7(b)), which may
offer MNF-based optical sensing with high sensitivity. In addition, the low-
dimension cross section, manageable dispersion and field enhancement have
proved helpful in achieving nonlinear optical effects with low threshold on
a miniaturized scale, and the abounding evanescent fields have been found
useful for atom trapping and guidance with great versatility.

This book is intended to provide a general introduction to up-to-date
research on subwavelength-diameter optical MNFs.: Starting from a brief
overview of optical MNFs in this chapter, Chapter 2 is devoted to theo-
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)

MNF\

Evanescent field Evanescent field

Fig. 1.7. Calculated Poynting vectors of silica MNFs guiding 633-nm-wavelength
light with diameters of (a) 450 nm and (b) 200 nm.

retical waveguiding properties of MNFs that may provide a comprehensive
understanding of light guiding in subwavelength-diameter MNFs, as well as
evanescent coupling between two MNFs and the theory of MNF-based interfer-
ometers and resonators. Chapter 3 introduces typical techniques for physical
drawing glass and polymer MNFs. Electron microscope investigations of as-
fabricated MNFs are also presented. Chapter 4 is complementary to Chapter
2, offering experimental properties of MNFs including micromanipulation, me-
chanical strength, optical losses and effects of the substrate, which are critical
to practical usage of MNFs. Chapter 5 introduces various MNF-based pho-
tonic components and devices including linear waveguides, waveguide bends,
optical couplers, interferometers, resonators, filters and lasers, that have been
reported so far. MNF optical sensors, as one of the most widely concerned ap-
plications of MNFs, are introduced in Chapter 6. Finally, Chapter 7 provides
a brief summary of applications of MNF's in nonlinear optics, atom optics and
other possibilities.

Although we are trying to provide a comprehensive account of this topic,
we do not promise a complete coverage of MNF research. We apologize that
we cannot cover all the work in this book. Finally, since optical MNFs or
nanowires are frontiers of broad areas including photonics, nanotechnology
and materials science, we hope that those who are working in these areas will
benefit in some measure from this book, and find it interesting and stimula-
ting.
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