PREMIER REFERENCE SOURCE

Security-Aware
Systems Applications
and Software
Development Methods

JqUIN TN

T

L T s ®

L HIET E hitite, 2.
1 1

4 »
Ne o

Security—Aware Systems
Applications and Software
Development Methods

Khaled M. Khan
Qatar University, Qatar

N
r
V-
g3
-
S

(] i
Tpmi) et
{1l VB
i b v
e o« .

&
il
gy
)
-44”
}d-t

l Information Science ‘

Managing Director: Lindsay Johnston

Senior Editorial Director: Heather A. Probst

Book Production Manager: Sean Woznicki

Development Manager: Joel Gamon

Acquisitions Editor: Erika Gallagher

Typesetter: Jennifer Romanchak

Cover Design: Nick Newcomer, Lisandro Gonzalez

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2012 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Security-aware systems applications and software development methods / Khaled M. Khan, editor.
p.cm.

Includes bibliographical references and index.

ISBN 978-1-4666-1580-9 (hardcover) -- ISBN 978-1-4666-1581-6 (ebook) -- ISBN 978-1-4666-1582-3 (print & perpetual
access) 1. Computer networks--Security measures. 2. Computer software--Development. 3. Computer security. 1. Khan,
Khaled M., 1959-

TK5105.59.543924 2012

005.8--dc23

2012002105

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

The views expressed in this book are those of the authors, but not necessarily of the publisher.

Editorial Advisory Board

Rafael Accorsi, University of Freiburg, Germany

Joseph Barjis, Delft University of Technology, The Netherlands

Ana Cavalli, TELECOM & Management SudParis, France

Jean-Noél Colin, University of Namur, Belgium

Herve Debar, France Telecom R & D, France

Narendra Gangavarapu, RailCorp, Australia

Munawar Hafiz, University of lllinois at Urbana-Champaign, USA

Jun Han, Swinburne University of Technology, Australia

Vitus Lam, University of Hong Kong, China

Denivaldo Lopes, Federal University of Maranhdo, Brazil

Qutaibah Malluhi, Qatar University, Qatar

Amel Mammar, TELECOM & Management SudParis, France

Gregorio Martinez, University of Murcia, Spain

Wes (Wassim) Masri, American University of Beirut, Lebanon

Sjouke Mauw, University of Luxembourg, Luxembourg

Nancy Mead, Carnegie Mellon University, USA

Bashar Nuseibeh, Open University, UK

Muthu Ramachandran, Leeds Metropolitan University , UK

Mohammed Rashid, Massey University, New Zealand

Lillian Restad, Norwegian University of Science and Technology, Norway
Nahid Shahmebhri, Linkoping University , Sweden

Dongwan Shin, New Mexico Tech, USA

Torbjorn Skramstad, Norwegian University of Science and Technology, Norway
Randy Smith, The University of Alabama , USA

Panagiotis Trimintzios, European Network and Information Security Agency, Greece
Edgar R. Weippl, Vienna University of Technology, Austria

Ty Mey Yap, Simon Fraser University, Canada

Mohammad Zulkernine, Queens University, Canada

Associate Editors

Yun Bai, University of Western Sydney, Australia

Konstantin Beznosov, University of British Columbia, Canada
Kendra Cooper, University of Texas at Dallas, USA

Frédéric Cuppens, ENST-Bretagne, France

Martin Gilje Jaatun, SINTEF, Norway

Jan lJiirjens, University of Dortmund, Germany

Florian Kerschbaum, SAP, Germany

Fabio Martinelli, National Research Council, Italy

Raimundas Matulevicius, University of Tartu, Estonia

Per Hakon Meland, SINTEF, Norway

Frank Piessens, Katholieke Universiteit Leuven, Belgium
Riccardo Scandariato, Katholieke Universiteit Leuven, Belgium
Hossain Mohammad Shahriar, Queen s University, Kingston, Canada
George Yee, Carleton University, Canada

Yan Zhang, University of Western Sydney, Australia

Xvii

Preface

ISSUES AND CHALLENGES IN SECURITY-AWARE SOFTWARE
DEVELOPMENT

Introduction

This is the first collection of the Advances in Engineering Secure Sofiware series. This book addresses
the paradigm of security-aware software development which is increasingly becoming an important
area of software engineering, and steadily gaining solid ground as the computing technologies evolve
and new security threats emerge. The paradigm deals with the problem of development duality between
constructing a functional software system, and at the same time creating a secure system; that is, security
concerns are integrated with the analysis and design of the systems functionality during the software
development process. In this practice, security is considered as an integral part in all phases of soft-
ware development. The engineering of secure software systems emphasizes security from a software
engineering perspective, and deals with technical, as well as managerial aspects of software security.
The process includes all aspects of software security in the development, deployment, and management
processes of software systems. The “Build Security In” initiative by Homeland Security essentially
advocates for secure software engineering that would provide adequate practices, tools, guidelines,
rules, principles, and other resources that software development stakeholder can use to build security
into software (Homeland security).

In this book, we use security-aware software development and secure software engineering inter-
changeably. The process of security-aware software development has two distinct but related objectives:
software assurance and security assurance of the software. Various definitions of these are available in
literature. In the context of this book, the former focuses more on an operational software that is free
from defects, reliable, and provides a level of confidence. Software assurance includes the development
process that ensures reliable functions and execution of software products as expected. Whereas, secu-
rity assurance guarantees that security requirements of the software are adequately met and software
can withstand security attacks. These two objectives are claimed to be achieved only when software
continues to be operational correctly even under attacks. To achieve these, we need to address security
throughout the entire lifecycle of the software development process.

In an another view point (Goertzel et al., 2008), a secure software must exhibit three properties: de-
pendability, trustworthiness, and survivability. Dependability refers to the notion of software assurance,
that is, the software executes correctly under attack or even can run on a malicious host. Software is
trustworthy if it contains little vulnerability, or no malicious logic. Survivability is the ability of software

xviii

to recover as quickly as possible with negligible damage from attacks. In this perspective, secure software
must provide justifiable confidence that it is free of vulnerabilities, executes as expected, does not com-
promise any of its required security properties, and can be trusted to continue executing under attacks.

Security-aware software development is not a single task that would produce secure software products;
rather, it involves corporate policies, entire software life cycle, development culture of team members,
budgeting, scheduling, etc. It may affect the way software is developed, the procedures are used, and the
practices are adopted. It requires organizations to define or modify their existing development process in
order to tailor towards security-aware development. Merely adopting security aspects into the traditional
development process may not be very useful unless an evaluation and monitoring of the effectiveness
of the new process is carried out.

Focus Areas

The conventional approach of bolting-in security functions on the top of software product after the
implementation of software is definitely not a good practice. It is often argued that security of software
has two binary values, either secure or not secure; and a software could only be secure by implementing
security functions such as cryptography, firewalls, access control mechanisms etc. However, this view
of better access control and cryptographic protocols and firewalls would keep a software secure does
not hold anymore. Security functions such as cryptography or firewalls alone cannot solve the problem
of software security. In contrast, security vulnerabilities in the software cause most of the security prob-
lems, and vulnerabilities are only present in bad software. Security functions such as encryptions, access
control cannot change bad software into a good one. It is stated rightly in (Viega & McGraw, 2001)
that bad software is the main reason for every computer security problem and malicious attacks. Thus,
the main goal of security-aware software development is how to design and build good software. This
leads us to identify the following focus areas that security-aware software development should include:

e A software development process that is well defined, and integrates the security issues from the
early phases of development.

« Sound requirements analysis and modeling techniques that support and address security require-
ments along with the functional requirements as opposed to modeling security in isolation

e Tools and techniques to detect vulnerabilities and monitor attacks at the systems functional level.

* Development of adequate protections against the identified vulnerabilities and attack scenarios

* Availability of supporting tools to aid the security requirements modeling, testing, and secure
integration of software, and

« Establishment of adequate training and practices for security-aware software development.

We discuss each of these briefly in the following sections.
Secure Software Development Process
In order to ensure good software production, there is a need for the establishment of a sound foundation
of knowledge and capabilities in the software development process. We need a secure software develop-

ment process that begins early with the analysis and modeling of functional and security requirements,
identification of vulnerabilities, planning for protection, and finally designing the software for security.

Xix

The development process should include required activities, methods, tools, and procedures to ensure
that the software product resulted of the process has necessary assurances in terms of operational and
security objectives of the software.

Failing to recognize the importance of security aspects up front may cause many security problems
and could be overlooked and left for post-development solutions. Secure software can be produced by
integrating security strategies, designs, and procedures into each phase of the development lifecycle.
Traditionally, security requirements in the software have often been considered as an afterthought, and
as a consequence, security is delayed to the end of the development.

The idea of integrating security requirements and objectives from the early stages of the software
development process began in late 1990s. In 2001, the US President’s then special advisor for cyberspace
security pointed out it clearly that members of IT Industry must build information security into their
products at the point of development, and not treat security as an afterthought (Ghosh et al., 2001). The
need for security-aware software was important and urgent that the concern was raised at the highest
level of the US administration. By not addressing security along with the systems functionality at an
earlier development stage, software engineers consequently may end up with bad software (Viega &
McGraw, 2001). The Software Engineering Institute’s (SEI) CERT program, and Team Software Pro-
cess (TSP) (Humphrey, 2000) initiatives launched a joint effort called TSP-Secure to develop secure
software. Main objective of this effort is to develop software that ensures quality and security. This
process has typical tasks such as identifying security risks, eliciting and defining security requirements,
secure design, secure code reviews, fuzz testing etc. The Office of Homeland Security also initiated the
approach of “Build Security In” in mid 2000s. The International Secure Software Engineering Council
(ISSECO), founded in 2008, focuses on the production of secure software, and its goal is to establish a
secure computing. The challenge is how to fit the ‘security aspects’ into the ‘functional aspects’ of the
software development process. Can the existing development methodologies be mixed with the rigid
and formal processes associated with software security, and how?

Security Requirements Analysis And Modeling

Security requirements engineering deals with the protection of assets from potential attacks that may
cause the software dis-functional (Haley et al. 2008). The current approaches have limited capability for
identifying and modeling security requirements of a software system at the beginning of the develop-
ment process. Security requirements analysis after the completion of a software system has created a
negative effect on ensuring a secure system. Security requirements need to be analyzed along with the
systems functional requirements at the early stages of the development process. Security requirements
cannot be analyzed in isolation from the functional requirements of the system. There is a need for a
balance between the conventional way of doing security requirements analysis and the iteration-centric,
feedback-driven systems functional requirements.

There are considerable research works done in this direction. To represent multilevel access control
(MAC) and role based access control (RBAC), UML notations have been used in (Shin & Ahn, 2000) and
(Ray et al., 2003) rather than extending the UML notations. In contrast, UMLsec proposed in (Jurjens,
2002) is an extension of UML. It allows software engineers to perform security analysis of the system
and verify if the model satisfies security requirements of a functionality. It also focuses on MAC of mes-
sage in sequence/state diagrams. Another work reported in (Alghathbar & Wijesekera, 2003) proposes
a framework called AuthUML for addressing security in use cases. The main idea is that the software
engineer can specify a list of functionalities, and the possible security issues of each of the functionalities.

Other approaches to analysing and modeling security requirements include KAOS (van Lamsweerde
2004), Secure Tropos (Mouratidis et al. 2003; Giorgini et al. 2005; Mouratidis et al. 2006), and Secure
i*(Liu et al. 2003). KAOS is used for reasoning about confidentiality requirements of a software sys-
tem (de Landtsheer and van Lamsweerde 2005). Secure Tropos is used to model security concerns of
a system such as security constraints, trust issues, and delegation of permission. Secure i* analyses
security requirements by analyzing the relationships between various system stakeholders and potential
attackers. SecureUML proposed in (Lodderstedt et al. 2002), an another extension of UML, is used to
model access control policies and how the policies could be integrated into the software development.

The approach to elicit, specify and analyze security requirements proposed in (Haley et al. 2008)
addresses both systems requirements and security requirements in the development process. It uses
functional requirements with security constraints in a security engineering perspective. The approach
in abuse frames (Lin et al. 2003) is used to analyze security requirements to determine security vulner-
abilities. It is based on the notion of an anti-requirement -the requirement of a malicious user that can
subvert the systems security requirement.

The process of understanding and modeling threats and security concerns at the atomic functional
level helps drive the analysis and design of the software towards more robust secure systems. This early
analysis of security requirements helps find potential security holes at the design level rather than wait
after the implementation is complete. This practice of identifying security design flaws from the start
will not only ensure design for security, it will also safe significant resources typically needed for post
development patching. Addressing the post-development security design flaws requires a major upgrade
and patching effort to minimize the resulting security problems which are usually too expensive. This
approach definitely calls for a concerted efforts from software engineers and security experts to work
together during the development process. They should strive together to mitigate the identified security
problems at the analysis and design level before coding.

Detecting Vulnerabilities and Attacks

Another important issue in secure software development needs attention, that is, identifying as well as
predicting attack vulnerabilities in software design. One of the pre requisite for secure software is the
guarantee of absence of vulnerabilities in the software. Vulnerabilities can be introduced in the soft-
ware at any point in the software development process. Vulnerabilities are exploited by any entity to
launch attacks. Most common code-level vulnerabilities include buffer overflow, format string bugs,
SQL injection, cross site scripting, and cross site request forgery. These vulnerabilities are directly ex-
ploitable by attackers. A vulnerable software can be exploited at runtime by providing specially crafted
data to overflow the buffer of the program, or SQL injection attack.. Buffer overflow (BOF) is one of
the worst and oldest vulnerabilities in software. It allows attackers to overflow data buffers in order to
execute arbitrary code. A vulnerable program can be exploited by specially crafted inputs to overflow
data buffers in order to execute malicious code or execute denial of service attacks by the attacker. In
SQL injection attacks, a malicious entity may bypass systems authentication, change privileges, launch
a denial-of-service attack, or run remote commands to install malicious software in the application. To
address buffer overflow vulnerabilities, various approaches are proposed such as static analysis, test-
ing, and fixing of vulnerable code. Static analysis is an approach to address this. It is the examination
of code in order to identify patterns that indicate potential design errors and/or security problems. The
technique is a very useful tool in detecting vulnerable code in programs. More severe form of buffer

xXi

overflow vulnerability attacks might not be identified until the program is operational. One of the main
objectives of security-aware software development is to reduce vulnerabilities as much as possible, and
improve protections to potential attacks in the software.

Software Protection

There is a need for “programmatic” protection techniques to address security problems related to soft-
ware. These may include language based approach, better memory management, efficient, hot and static
patching, or logic based reasoning techniques. Programmers could use secure coding practices such as
avoiding coding errors, the awareness of bugs, guarding variables from exploitations etc. Developing
supportive tools for secure integration and testing software is also essential to aid the protection of soft-
ware. Defensive coding practices require training of developers and modification of the legacy applica-
tions to assure the correctness of validation routines and completeness of the coverage for all sources of
input. Adequate training and good software security practices can help ensure that a software is secure.

Education and Training

The awareness, caution, intention, and adherence are the important elements that need to be integrated
in training and practices for secure software development. It is important that awareness of security is
reflected in every phases of the process. There is a strong demand for skilled professionals who can build
security from the ground up. The IEEE Computer Society (IEEE-CS) and Association for Computing
Machinery (ACM) have recently recognized the Master of Software Assurance (MSwA) Reference
Curriculum for a master’s program in software assurance (http://www.cert.org/mswa/). This recognition
sends signals to the educational community that software assurance is an important part in computing
education.

Challenges Ahead
To achieve the goals of security software development, several challenges need to be addressed.

» There is an urgent need for closed collaborations between security experts and software engineers
during all phases of the development process. Security personnel should be integrated in the soft-
ware development team. Calling in security experts only after the completion of software devel-
opment would not bring much benefits. The practice of thinking security as a post development
phase would not help secure software engineering much.

* We need a complete software development life cycle that integrates security aspects in all phases
in the development process. It is difficult to identify how and which ways security could be dealt
with in different phases of the development process. In other words, security requirements should
be analyzed along with the functional units of the software.

* The development of a culture of “think security” in the development environment might be dif-
ficult to achieve. Changing the mindset of all team members of the software development team
needs a different approach. The development projects should motivate their team members not to
think security just as an afterthought. This paradigm calls for the change of corporate culture, and
there is a chance that it may face resistance within the organization.

The development of automatic tools that could aid the process of modeling, designing, and testing
of security along with the functional requirements of the system. Without automatic or semi-auto-
matic tool support, it would be difficult to achieve the objectives of secure software engineering.
Development of new tools and languages need more research.

There is a need for assurances that the process of security-aware development would not under-
mine other non-functional attributes of the process as well as the finished software products. In
other words, a secure software, for example, would not degrade or ignore the usability of the sys-
tem due to the inclusion of security as a necessary quality property of the software. The challenge
is how to make a balance between security and other quality properties of the system.

Enough care should be needed so that the process of secure software development does not be-
come clumsy and too complicated for the stakeholder. Imposing an overly complex and unre-
alistic process would not be very beneficial for the achievement of the main goals of this new
paradigm, rather, this may be counter-productive in software development.

Controlling and monitoring budgets and schedules of secure software development project could
be problematic if proper process is not adopted. There is a possibility for overblown budgets and
delayed delivery schedules.

Finally, convincing senior management in software development organizations could be difficult
for some managers. This challenge is important because any changes to the development process-
es and practices involve resources, and these resources need to be approved by the top managerial
body of the organization. This requires organizations to modify their organizational as well as
management policies and activities.

Organization of the Book

The materials of this book are selected around six related themes of secure software engineering process
that have already been discussed earlier. This collection catalogues total eighteen chapters, and they are
grouped into six parts corresponding to six broad themes:

Section 1: Secure Software Development Process

o Chapters 1,2 and 3

Section 2: Security Requirements Analysis and Modeling
o 4,5,6and7

Section 3: Vulnerability Detection

o Chapters 8 and 9

Section 4: Protection Mechanisms

o Chapters 10, 11, 12, 13

Section 5: Tools for Security-Aware Development
o Chapter 14 and 15

Section 6: Secure Software Education and Training
o Chapters 16, 17, and 18.

Xxiii

Chapter Abstracts

Chapter 1 focuses upon software security as the resistance against misuse and/or attacks. This chapter
argues that secure code features are important, aiming at making the code un-exploitable, preventing
attacks like buffer overflow. It presents an empirical study on how agile software developers include
security in their software projects. The chapter also presents a case study showing that software develop-
ment without a persistent focus on security results in software with a number of vulnerabilities. Finally,
the chapter presents two possible extensions to agile methodologies, intended to increase developers’
awareness of software security.

Chapter 2 presents a framework and step-wise approach towards achieving and optimizing assur-
ance by infusing security knowledge, techniques, and methodologies into each phase of the Software
Development Lifecycle (SDLC). This chapter outlines a progression of techniques and procedures that
help promote and optimize security assurances. By infusing security into the SDLC from inception to
implementation, security is proactively considered while preserving customer priorities and mitigating
threat agent’s opportunities to negatively impact those goals and assets. The detailed approaches provide
abasis for understanding software assurance techniques and methodologies that could be used throughout
the project development process.

Chapter 3 proposes a design approach that incorporates privacy risk analysis using UML diagrams
to minimize privacy risks in the final design. The approach iterates between the risk analysis and design
modifications to eliminate the risks until a design is risk free. The objective of this chapter is to propose
an e-services design approach that incorporates privacy risk analysis to obtain designs that are more
likely to preserve privacy. The final design is obtained as the culmination of a series of alternative de-
signs where each alternative design is obtained by re-design to avoid or lessen privacy risks identified
through a privacy risk analysis on the last design.

Chapter 4 introduces a method for security embedded business process modeling that captures security
functions during the business process modeling phase. The proposed method draws on two well-tested
theoretical foundations — enterprise ontology and organizational semiotics. The proposed method results
in a security-embedded business process model that is completely based on formal semantics. That is,
the models can be automatically analyzed or simulated to study the impact of the incorporated security
requirements and whether the security requirements compromise business performance in any way. The
resultant models can be straightforwardly simulated in order to observe how the security functions are
executed.

Chapter 5 presents an approach to integrate RBAC and MAC into use-case, class, and sequence
diagrams of the unified modeling language (UML), providing a cohesive approach to secure software
modeling that elevates security to a first-class citizen in the process. This chapter details a practical
approach that integrates RBAC and MAC into UML for secure software modeling and analysis with a
two-fold emphasis. These access control extensions and security analyses have been prototyped within
a UML tool.

Chapter 6 discusses the role of pilot case studies in security requirements engineering and their impact
on method refinement, student projects, and technology transition. The chapter starts by providing some
general background on the importance of requirements engineering and some specifics on the problems
encountered in security requirements engineering. It then introduces the SQUARE and SQUARE-Lite
methods, which were the research models used in the case studies. The chapter discusses both benefits
and challenges to the underlying research, education, and technology transition effort.

XXiv

Chapter 7 reviews current approaches to security requirements engineering and conclude that they lack
explicit support for managing the effects of software evolution. It then suggests that a cross fertilization
of the areas of software evolution and security engineering would address the problem of maintaining
compliance to security requirements of software systems as they evolve. The chapter suggests that one
approach to addressing this problem of preserving security properties is a cross fertilization of approaches
to managing software evolution in security engineering

Chapter 8 classifies runtime Buffer overflow (BOF) attack monitoring and prevention approaches
based on seven major characteristics. It then compares these approaches for attack detection coverage
based on a set of BOF attack types. The classification is expected to enable researchers and practitioners
to select an appropriate BOF monitoring approach or provide guidelines to build a new one.

Chapter 9 proposes a new testing methodology called Configuration Fuzzing. As the application
runs in the deployment environment, this testing technique continuously fuzzes the configuration and
checks “security invariants” that, if violated, indicates vulnerability. The chapter discusses the approach
and introduces a prototype framework called ConFu (CONfiguration FUzzing testing framework) for
implementation. It also presents the results of case studies that demonstrate the approach’s feasibility
and evaluate its performance.

Chapter 10 presents an approach for retrofitting existing web applications with run-time protection
against known as well as unseen SQL injection attacks (SQLIAs) without the involvement of application
developers. The precision of the approach in this chapter is also enhanced with a method for reducing the
rate of false positives in the SQLIA detection logic, via runtime discovery of the developers’ intention
for individual SQL statements made by web applications. The proposed approach is implemented in the
form of protection mechanisms for J2EE, ASP.NET, and ASP applications. The AMNESIA test bed is
extended to contain false-positive testing traces, and is used to evaluate SQLPrevent.

Chapter 11 describes several vulnerabilities for C and C++, and how these could be remedied by
modifying the management information of a representative manual memory allocator and garbage col-
lector. The chapter examines the security of several memory allocators and discusses how they could
be exploited.

Chapter 12 presents a method for hot patching executable and linkable format (ELF), formerly called
Extensible Linking Format binaries that supports synchronized global data and code updates; and reason-
ing about the results of applying the hot patch. It develops a format, which is called Patch Object, for
encoding patches as a special type of ELF relocatable object file. It then builds a tool called Katana that
automatically creates these patch objects as a by-product of the standard source build process.

Chapter 13 primarily investigates security issues of the XML documents, and discusses a protection
mechanism, and presents a formal approach to ensure the security of web-based XML documents. The
proposed approach starts by introducing a high level language to specify an XML document and its
protection authorizations. The chapter also examines the syntax and semantics of the language.

Chapter 14 presents a prototype tool for the integration of security-aware services based applications.
The tool is constructed on the principles of security characterization of individual software services. It
uses the technique of reasoning between the ensured security properties of the services and the security
requirements of the user’s system. Rather than reporting the research outcomes, this chapter describes
the architecture and capabilities of the tool for secure software integration. It demonstrates the applica-
bility of the tool with an example.

Chapter 15 details CAIRIS (Computer Aided Integration of Requirements and Information Security),
a step towards tool-support for usable secure requirements engineering. The chapter claims CAIRIS not

only manages the elements associated with task, requirements, and risk analysis, it also supports subse-
quent analysis using novel approaches for analysing and visualising security and usability. The chapter
illustrates an application of CAIRIS by describing how it was used to support requirements analysis in
a critical infrastructure case study.

Chapter 16 proposes a context as well as a set of models used to develop and apply a secure software
production pedagogy. A secure adaptive response model is discussed in the chapter to provide an analyti-
cal tool to assess risk associated with the development and deployment of secure information systems. A
pedagogical model for information assurance curriculum development is then established in the context
of the developed secure information system models. The relevance of secure coding techniques to the
production of secure systems, architectures and organizational operations is also discussed.

Chapter 17 presents an overview of the Master of Software Assurance curriculum project, including
its history, student prerequisites, and outcomes, a core body of knowledge, and a curriculum architecture
from which to create such a degree program. The chapter also provides recommendations for implement-
ing a Master of Software Assurance program.

Chapter 18 reports on the rigorous and scientific participatory approach for producing the adequate
learning program meeting requirements elicited from the professional association members. It presents
the skills card that has been elaborated for capturing these requirements and the program, called Mas-
ter in Information System Security Management, which has been built together with the University of
Luxembourg for matching these requirements. This program proposes a holistic approach to information
security management by including organization, human and technical security risks within the context
of regulations and norms.

CONCLUSION

As one can see from the above abstracts that all these chapters are timely in terms of their importance,
coverage and new ideas. It is not an easy task to select chapters that are appropriate for various aspects of
secure software engineering, and are in the correct sequence in terms of their focus. Carefully selected,
these chapters reasonably cover major aspects of security-aware software development that have been
discussed in this preface. I am sure that the selected chapters in this book address some of the chal-
lenges pointed out here. This collection of research work not only serves the hard technological aspects,
but rather some of these also address other areas such as e-commerce and educational issues of secure
software engineering. The contributing authors are drawn from different parts of the world ranging from
Norway to Australia to Gulf and North America. This collection is a fine blending of various researchers
with different focus and writing styles. I am very positive that our readers with different backgrounds
will enjoy this collection.

Khaled M. Khan
Qatar University, Qatar

XXvi

REFERENCES

Alghathbar, K., & Wijesekera, D. (2003). AuthUML: A three-phased framework to model secure use
cases. Proceedings of the Workshop on Formal Methods in Security Engineering: From Specifications
to Code, pp. 77-87

de Landtsheer, R., & van Lamsweerde, A. (2005). Reasoning about confidentiality at requirements en-
gineering time. In Proceedings of the 10th European software engineering conference, Lisbon, Portugal:
ACM. pp. 41-49.

Ghosh, A., Howell, C., & Whittaker, J. (2002). Building software securely from the ground up. /EEE
Software, 19(1), 14-16. doi:10.1109/MS.2002.976936

Goertzel, K. (2008). Enhancing the Development Life Cycle to Produce Secure Sofiware. A reference
Guidebook on Software Assurance. Department of Homeland Security.

Giorgini, P, Massacci, F., Mylopoulos, J., & Zannone, N. (2005). Modeling security requirements
through ownership, permission and delegation. in Proceedings of 13th IEEE International Conference
on Requirements Engineering, Paris, France, pp. 167-176

Haley, C. B., Laney, R., Moffett, J., & Nuseibeh, B. (2008). Security Requirements Engineering: A
Framework for Representation and Analysis. IEEE Transactions on Software Engineering, 34(1),
133-153. doi:10.1109/TSE.2007.70754

Security, H. Build Security In — Setting a high standard for software assurance. https://buildsecurityin.
us-cert.gov/bsi/home.html (Extracted on January 29, 2012)

Humpbhrey, W. (1990). Introduction to the Team Software Process. Addison Wesley.

Jurjens, J. (2002). UMLsec: extending UML for secure systems development. Proceedings of UML,
Springer LNCS, Vol. 2460, pp. 1-9.

Lin, L., Nuseibeh, B., Ince, D., Jackson, M., & Moffett, J. (2003). Introducing abuse frames for analysing
security requirements. in Proceedings of 11th IEEE International Requirements Engineering Confer-
ence, pp. 371-372

Liu, L., Yu, E., & Mylopoulos, J. (2003). Security and Privacy Requirements Analysis within a Social
Setting, In Proceedings of the 11th International Requirements Engineering Conference, IEEE CS Press,
pp- 151-161

Lodderstedt, T., et al. (2002). SecureUML: A UML-based modeling language for model-driven security.
In Proceedings of UML, Springer LNCS, Vol. 2460, pp. 426-441.

Mouratidis, H., Giorgini, P., & Manson, G. (2003). Modelling secure multiagent systems. In Proceedings
of the 2nd international joint conference on Autonomous agents and multiagent systems Melbourne,
Australia:ACM, pp. 859-866.

Mouratidis, H., Jurjens, J., & Fox, J. (2006). Towards a Comprehensive Framework for Secure Systems
Development. In Advanced Information Systems Engineering, pp. 48-62.

XXVii

Ray, I, et al. (2003). Using parameterized UML to specify and compose access control models. Pro-
ceedings of the 6th IFIP Working Conference on Integrity and Internal Control in Information Systems,
ACM Press, pp. 115-124.

Shin, M., & Ahn, G. (2000). UML-based representation of role-based access control. Proceedings of
the 9th International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises,
IEEE Computer Society, pp. 195-200.

van Lamsweerde, A. (2004). Elaborating security requirements by construction of intentional anti-models.
in 26th International Conference on Software Engineering, pp. 148-157

Viega, J., & McGraw, G. (2001). Building Secure Software - How to avoid security problems the right
way. Addison-Wesley.

Section 1
Secure Software
Development Process

