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PREFACE

Image processing, electron optics, and electron detection are the subjects of
this volume.

We begin with a chapter by A. Asif on noncausal random field models,
which are attracting considerable attention in image and video processing but
require a very different treatment from the models commonly found in the im-
age processing textbooks. Asif explains in detail how these noncausal models
are handled, and discusses three applications that illustrate the process.

This is followed by a particularly timely account by A.R. Faruqi of
direct electron detectors for electron microscopy. With electron microscope
image processing now commonplace, it was inevitable that new techniques
for getting the electron image from the microscope to the computer would
emerge. Faruqi describes two types of semiconductor pixel detectors in
great technical detail and illustrates their usefulness in the area of electron
cryomicroscopy. This new generation of detectors is of potential importance
for a very wide audience, and I am delighted to include this survey here.

The third chapter is by Z.-x. Liu, who shows how useful MATHEMATICA
can be for calculating expressions for the aberration coefficients of electron
lenses. In the past, these coefficients have, for the most part, been established
by hand at the expense of much long and dull algebra. For the higher-order
aberrations, however, the task becomes gigantic and ever since the 1970s, the
help of computer algebra has been invoked. Efficient and (reasonably) user-
friendly commercial packages are now available, such as MAPLE and MATH-
EMATICA. Here, Liu shows how formula for the higher-degree chromatic
aberrations of electron lenses can be established with the aid of Mathematica.

We conclude with a substantial contribution by D. Tschumperlé and R. De-
riche on the role of anisotropic diffusion partial differential equations in the
regularization of multichannel images. The authors examine the technique in
considerable detail and give several examples, notably from the realm of color
image processing.

As always, I thank all the authors for contributing to the series and for the
trouble they have taken to make their material accessible to a wide readership.
Forthcoming contributions are listed in the following pages.

Peter Hawkes



FUTURE CONTRIBUTIONS

G. Abbate
New developments in liquid-crystal-based photonic devices

S. Ando
Gradient operators and edge and corner detection

C. Beeli
Structure and microscopy of quasicrystals

V.T. Binh and V. Semet
Cold cathodes

A.B. Bleloch
Aberration correction and the SuperSTEM project

C. Bontus and T. Kohler
Helical cone-beam tomography

G. Borgefors
Distance transforms

Z. Bouchal
Non-diffracting optical beams

A. Buchau
Boundary element or integral equation methods for static and time-dependent
problems

B. Buchberger
Grobner bases

F. Colonna and G. Easley
The generalized discrete Radon transforms and their use in the ridgelet
transform

T. Cremer
Neutron microscopy

H. Delingette
Surface reconstruction based on simplex meshes

X1



xii FUTURE CONTRIBUTIONS

R.G. Forbes
Liquid metal ion sources

C. Fredembach
Eigenregions for image classification

S. Fiirhapter (vol. 146)
Spiral phase contrast imaging
L. Godo and V. Torra
Aggregation operators

A. Golzhduser
Recent advances in electron holography with point sources

D. Greenfield and M. Monastyrskii
Selected problems of computational charged particle optics

M. Haider
Aberration correction in TEM

M.I. Herrera
The development of electron microscopy in Spain

D.P. Huijsmans and N. Sebe
Ranking metrics and evaluation measures

M. Hytch, E. Snoeck, and F. Houdellier
Aberration correction in practice

K. Ishizuka
Contrast transfer and crystal images

J. Isenberg
Imaging IR-techniques for the characterization of solar cells

K. Jensen
Field-emission source mechanisms

L. Kipp
Photon sieves

G. Kogel
Positron microscopy

T. Kohashi
Spin-polarized scanning electron microscopy

O.L. Krivanek
Aberration correction and STEM



FUTURE CONTRIBUTIONS Xiii

R. Leitgeb
Fourier domain and time domain optical coherence tomography

B. Lencova
Modern developments in electron optical calculations

H. Lichte (vol. 150)
New developments in electron holography

W. Lodwick
Interval analysis and fuzzy possibility theory

L. Macaire, N. Vandenbroucke, and J.-G. Postaire
Color spaces and segmentation

M. Matsuya
Calculation of aberration coefficients using Lie algebra

S. McVitie

Microscopy of magnetic specimens

S. Morfu and P. Marquié

Nonlinear systems for image processing

T. Nitta
Back-propagation and complex-valued neurons

M.A. O’Keefe
Electron image simulation

D. Oulton and H. Owens
Colorimetric imaging

N. Papamarkos and A. Kesidis
The inverse Hough transform

R.E.W. Pease (vol. 150)
Miniaturization

K.S. Pedersen, A. Lee, and M. Nielsen
The scale-space properties of natural images

L. Perfilieva
Fuzzy transforms

V. Randle
Electron back-scatter diffraction

E. Rau
Energy analysers for electron microscopes



Xiv FUTURE CONTRIBUTIONS

E. Recami
Superluminal solutions to wave equations

J. Rodenburg (vol. 150)
Ptychography and related diffractive imaging methods

P.E. Russell and C. Parish
Cathodoluminescence in the scanning electron microscope

G. Schmahl
X-ray microscopy

J. Serra (vol. 150)
New aspects of mathematical morphology

R. Shimizu, T. Ikuta, and Y. Takai
Defocus image modulation processing in real time

S. Shirai
CRT gun design methods

H. Snoussi (vol. 146)
Geometry of prior selection

T. Soma
Focus-deflection systems and their applications

J.-L. Starck
Independent component analysis: the sparsity revolution

I. Talmon
Study of complex fluids by transmission electron microscopy

G. Teschke and 1. Daubechies
Image restoration and wavelets

M.E. Testorf and M. Fiddy
Imaging from scattered electromagnetic fields, investigations into an unsolved
problem

M. Tonouchi
Terahertz radiation imaging

N.M. Towghi
I, norm optimal filters

E. Twerdowski
Defocused acoustic transmission microscopy



FUTURE CONTRIBUTIONS

Y. Uchikawa
Electron gun optics

K. Urban
Aberration correction in practice

C. Vachier-Mammar and F. Meyer
Watersheds

K. Vaeth and G. Rajeswaran
Organic light-emitting arrays

M. van Droogenbroeck and M. Buckley
Anchors in mathematical morphology

M. Wild and C. Rohwer (vol. 146)
Mathematics of vision

R. Withers

XV

Disorder, structured diffuse scattering and the transmission electron micro-

scope



CONTENTS

CONTRIBUTORS .« . v o v e e e e e e e e e e e e e e e vii
PREFACE . . . . . . o o i e e e e e e e e e e e e e e ix
FUTURE CONTRIBUTIONS . . . & v v v v e e e e e e e e e xi

Applieations of Noncausal Gauss—-Markov Random Field Models
in Image and Video Processing

AMIR ASIF
I. Introduction . . . . . . . . . ... 2
II. Terminology . . . . . . . . . . . . oo o 3
III. Potential Matrix . . . . . . . . . . . ... ... .. .. 7
IV. Rauch-Tung—Striebel Smoothing for Image Restoration . . . . . 15
V. Video Compression . . . . . . . . . .. ... . 22
VI. Inversion Algorithms for Block Banded Matrices . . . . . . . . 37
VII. Conclusions . . . . . . . . . .. . e 50
References . . . . . . . . . . . oo 51

Direct Electron Detectors for Electron Microscopy

A.R. FARUQI
I. Introduction . . . . . . . . . . . . e e 55
II. Detectors—General Introduction . . . . . . . . . . ... ... 57
|1 R 21 1 1 e T 59
IV. CCDS . . . . o e e e e e e e e e 60
V. Direct Electron Semiconductor Detectors . . . . . . . . . . .. 61
VI. Monte Carlo Simulations . . . . . . . . . . ... ... .... 62
VII. Hybrid Pixel Detectors, Medipix1, and Medipix2 . . . . . . .. 64
VIII. MAPS Detectors Based on CMOS . . . . . . ... ... ... 80
IX. Conclusions . . . . . . . . . . . e 90
Acknowledgments . . . . . ... oL oo 90
References . . . . . . . . . . . . e 91



vi CONTENTS

Exploring Third-Order Chromatic Aberrations of Electron Lenses
with Computer Algebra

ZHIXIONG LIU

L. Introduction . . . . . . . . ... 96
II. Variational Function and Its Approximations . . . . . . . . . . 96
III. Chromatic Perturbation Variational Function and Its
Approximations . . . . . ... ... Lo 102
IV. Analytical Derivation of Third-Order Chromatic Aberration
Coefficients . . . . . . . . . . . . L 106

V. Graphical Display of Third-Order Chromatic Aberration Patterns 129
VI. Numerical Calculation of Third-Order Chromatic Aberration

Coefficients . . . . . . . . . . . . ... 135
VII. Conclusions . . . . . . . . . . . . . v i i 143
Acknowledgments . . . . . . ... ..o 146
APpeidiX = : = 5 5.5 s w5 26 8 9 s T8 ww s ®E e P EE &w 146
References . . . . . . . . . . . . . . ... 148

Anisotropic Diffusion Partial Differential Equations for Multichannel
Image Regularization: Framework and Applications

DAVID TSCHUMPERLE AND RACHID DERICHE

Preliminary Notations . . . . . . . . . .. ... ... ..... 150

I. Introduction . . . . . . . ... . 151
II. PDE-Based Smoothing of Multivalued Images: A Review . . . . 160
II. Curvature-Preserving PDEs . . . . . . .. .. ... ... ... 174
IV. Implementation Considerations . . . . . . . .. .. ... ... 181
V. Applications . . . . . ... oLl 183
VI Conclusion . . . . .. .. ... ... ..., .. 193
Appendix A . . ... e 195
Appendix B. . . . . . . ..o Lo 197
AppendiXC . &« 5o s 6 v 9 ¢ 6 5 5 5 B & 5 W s w e s b ow s 198
References . . . . . . . . . ... ... 203



ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL. 145

Applications of Noncausal Gauss—-Markov Random Field
Models in Image and Video Processing

AMIR ASIF

Computer Science and Engineering, York University, Toronto, Ontario, Canada M3J 1P3

I. Introduction 2
II. Terminology 3
III. Potential Matrix e 7
A. Two-Dimensional Gauss~Murkov Random Fields 8
. Two-Dimensional Bilateral Representation . . . . . . . . . . . . 8
2. Two-Dimensional Forward Unilateral Representation . . . . . . . . . 10
3. Two-Dimensional Backward Unilateral Represeatation . . . . . . . . 11
B. Three-Dimensional Gauss—Markov Random Fields . . . . . . . . . . 12
I. Three-Dimensional Bilateral Representation . . . . . . . . . . . 12
2. Three-Dimensional Forward Unilateral Representation . . . . . . . . 13
3. Three-Dimensional Backward Unilateral Representation . . . . . . . . 14
IV. Rauch-Tung-Striebel Smoothing for Image Restoration e 15
A. BlurringModels . . . . . . . . . . o 0L L L. 15
B. Image Restoration Algorithm . . . . . . . . . . . . . . . . 17
C. Image Restoration Experiments . . . . . . . . . . . . . . . . 19
D. Summary - : o« v i w4 . s @ 5 s w4 s ow a5 e s s s 22
V. Video Compression . . . . . . . . . . . . . ... L. 22
A. SNP/VQR Encoder . . . e 24
B. Computatlonally Efficient Implementatlon o . s s @ B B o€ A F % 26
. Structure of Three-Dimensional Forward Regressorc Lo e 26
C. Sub Block SNP/VQR Ed % s o m s m o wm ot s m s e e s s 29

D. Computational Savings I T S S S R T
E. Cascaded VQ . . . . . . . . . . . . .. L. 33
F. Video Compression Experiments . . . . . . . . . . . . . . . 34
G. Summary . . . . i v 8 @ 5 8 M % s @ i 0§ & 36
VL. Inversion Algorithms for BlOLk Banded Mamus e 37
A. Notation . . . . . . . . . L L L Lo 39
B. Theorems . . N 41
C. lnverslon Algorlthms for Block Banded Mdtrlces . e 45
. Inversion of Full Matrix P with Block Banded Inverse .A o 5 0§ B o2 x 45
2. Inversion of L-Block Banded Matrices A . . . . . . . . . . . . 47
D. Simulations Ce e e 49
E. Summary . . & & & & & 4 % & s o o+ s o8 & s s w8 s 49
VII. Conclusions . . . . . . . . . . . . L 50
References . . . . . . . . . . . . . ... L. 51

1

ISSN 1076-5670 Copyright 2007, Elsevier Inc.

DOLI: 10.1016/S1076-5670(06)45001-1 All rights reserved.



2 ASIF
I. INTRODUCTION

Noncausal Gauss—Markov random fields (GMRFs) have been used exten-
sively in image processing. An analysis of the major applications reveals
that GMRFs have been versatile enough to be applied in areas as diverse as
stochastic relaxation for image restoration (Geman and Geman, 1984), surface
reconstruction and pattern analysis (Geiger and Girosi, 1991), pattern recog-
nition in computer vision (Rangarajan et al., 1991), emission tomography in
nuclear science (Lee et al., 1993), textured image segmentation in image
processing (Derlin and Elliott, 1987), anomaly detection in hyperspectral
imagery (Schweizer and Moura, 2000), and data assimilation in physical
oceanography (Asif and Moura, 1999). This chapter reviews the central
concepts of noncausal GMRFs and explains these concepts by providing
examples from the fields of image restoration, video compression, and matrix
inversion in linear algebra.

Unlike the one-dimensional (ID) GMRF models, which naturally lead
to recursive processing algorithms of the Kalman—Bucy type, the two-
dimensional (2D) (Moura and Balram, 1992; Tekalp et al., 1985; Woods,
1972) and three-dimensional (3D) (Schweizer and Moura, 2000) noncausal
GMREFs are not conducive to recursion because of their bidirectional structure.
After introducing the basic definitions, this chapter establishes several
recursive one-sided formulations (Moura and Balram, 1992) for both 2D
image field and 3D video sequences that are equivalent to the original
noncausal GMRF models, yet enable the optimal recursive processing of the
2D and 3D fields. These recursive, one-sided formulations are obtained by
performing a Cholesky factorization of the potential matrix A, also referred to
as the information matrix, which is the inverse of the covariance matrix P. The
forward Cholesky factorization, A = LT £, with £ being a lower triangular
matrix, leads to the forward unilateral representation that processes the 2D
image field and the 3D video sequence in the natural order of occurence, i.e.,
starting with the first row (i = 1), all subsequent rows are processed one after
the other in the lexicographic order (1 < i < Ny) from the first frame to the
last frame.

This chapter highlights the central ideas of noncausal GMRFs by con-
sidering three applications. First, the classical image restoration problem is
considered in which the input image is corrupted with additive noise and
a convolutional blur resulting from such factors as sensor noise, improper
image focus, and relative object-camera motion. The 2D forward unilateral
model is used to develop a computationally efficient Rauch-Tung—Striebel
(RTS) smoother-type algorithm, which, in comparison with the Wiener filter
and filters that consider one-sided causal state models, restores blurred images
at relatively higher peak signal to noise ratio (PSNR) and improved perceived
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quality. The second application of noncausal GMRFs is chosen from video
compression in multimedia communications. The proposed video codec,
referred to as SNP/VQR, models the 3D video sequence as a 3D noncausal
GMREF that enables scalable, noncausal prediction (SNP) based on the 3D
forward recursive representation. The resulting error field is compressed with
vector quantization coupled with conditional replenishment (VQR). Because
multimedia communications require real-time processing of video sequences,
practical implementations of the SNP/VQR are derived by exploiting the
block banded structure of the potential matrix A of the noncausal GMRF
used to model the 3D video sequence. SNP/VQR outperforms the standard
video codecs, including the MPEG4 and H.263, at low bit rates necessary for
mobile wireless networks. Finally, a third application of noncausal GMRFs
is selected from matrix inversion in linear algebra. In image and signal
processing, it is often customary to invert large, block banded matrices. The
theory of GMREFs is applied to develop computationally efficient algorithms
for inverting positive definite and symmetric, L-block banded matrices A
and their inverses P. Compared to the direct inversion algorithms, the
proposed algorithms provide computational savings of up to two orders of
the magnitude of the linear dimension of the constituent blocks in A and P.

This chapter is organized as follows. Section II, introduces terminology,
as well as the basic definitions of the local neighborhoods, Markov, and
Gaussian fields. The block banded structure of the potential matrices A
along with the one-sided (unilateral) expressions representing the noncausal
GMREFs for both 2D image fields and 3D video sequences are derived in
Section III. Sections I'V to VI consider the three applications of the noncausal
GMRFs in the areas of image restoration (Section 1V), video compression
(Section V), and block banded matrix inversion (Section VI). For each
application, we compare the performance of the GMRF-based algorithms
with the standardized algorithms commonly used in these areas. Finally,
Section VII concludes by summarizing the main concepts.

II. TERMINOLOGY

Before formally defining the GMRFs, we introduce the terminology used
in the article. In our exposition, we follow much of the notation used in
(Moura and Balram, 1992). Considering a still image as a 2D finite lattice of
dimensions (N; x Nj), the pixel intensity at site (i, j) is represented by the
random variable X (i, j). Lower-case letters x; ; denote the values assumed by
X (i, j). In other words, x; ; is a particular realization of the random variable
X (i, j). Similarly, a video sequence is modeled as a 3D lattice of dimensions
(N; x Nj x Ng) with X (i, j, k) representing the pixel intensity at spatial
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location (i, j) in frame k. As for still images, the lower-case letters x; ;j
denote the intensity value assumed by the 3D random variable X (i, j, k). In
terms of the pixel intensities, the conditional probabilities of the 2D and 3D
Markov random fields are defined as follows.

2D Image Field:

Prob(X (i, j) = xi,j | X(m,n) = Xy, (i, j) # (m,n))
= Prob(X (i, j) = x;,; | X(m,n) = Xy, (m,n) e N'3V). (1)

p.2)

3D Video Sequence:

PI‘Ob(X(i. Js k) = Xi, j.k | X (m, l’l,q) = Xm.n,q» i, Jj, k) # (m,n, (1))

= Prob(X(i, J k) =xijx | X(m,n,q) =xmng, (m,n,q) € ./\/'((;:f;;““).

(2)
where /\/((I',"z';) is the pth-order neighborhood for spatial site (m,n) within
the 2D image. Likewise, J\/((;:'{;q) is the pth-order local neighborhood for
site (m, n, q) within the 3D video sequence. In keeping with the spirit of
the Markovian property, the local neighborhoods are usually chosen to be of
reduced order compared with the overall dimensions of the fields. Next, we
define the neighborhoods on the basis of the Euclidean distance.

Local Neighborhoods: The pth-order neighborhoods are defined in terms
of the closest neighbors of the reference pixel as follows.
2D Image Field: For 2D spatial coordinates (i, j),

NGB ={0m.m): 0 < (m— ) + (n = j)?) < D} (3)
3D Video Sequence: For 3D spatial coordinates (i, j, k),

N<(/I113)k) ={m,n,q): 0 < (m—i)>+(n—j)*+ (g —k?) <D,
4

where D), is an increasing function of order p that represents the square of
the Euclidean distance between a pixel and its furthest neighbor. Figure |
shows the 2D neighborhood configurations for pixel (i, j), represented by
“0,” with D, setto 1, 2,4, 5, 8,9, corresponding to order p = 1,2, 3,4, 5,6,
respectively. Note that a neighborhood configuration of order p includes all
pixels marked from “1” to “p.” As an example, the second-order (p = 2)
neighborhood is obtained by setting D, = 2 and includes pixels labeled as
1s or 2s in Figure 1. In terms of the spatial coordinates (7, j) of the reference



