ACADEMIC
\\\\\\\

- CHAINS and
MACHINE
COMPONENTS

DESIGN

DAN B. MARGHITU @




KINEMATIC CHAINS AND
MACHINE COMPONENTS

DESIGN

Dan B. Marghitu
Department of Mechanical Engineering, Auburn University, Auburn, AL

ELSEVIER
ACADEMIC
PRESS

AMSTERDAM + BOSTON » HEIDELBERG « LONDON
NEW "™V - N"YBENRD « PARIS * SAN DIEGO
SAN FR/ * TOKYO



Elsevier Academic Press

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

525 B Street, Suite 1900. San Diego, California 92101-4495, USA
84 Theobald’s Road, London WC1X 8RR, UK

This book is printed on acid-free paper.
Copyright © 2005, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopy. recording. or any information storage and retrieval system. without
permission in writing from the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,

UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, ¢-mail: permissions@elsevier.com.uk. You may also
complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting “*Customer Support™
and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data

Marghitu, Dan B.
Kinematic chains and machine components design / Dan Marghitu.
p. cm.
Includes bibliographical references and index.
ISBN 0-12-471352-1 (alk. paper)
|. Machinery. Kinematics of. 2. Machinery—Design and construction. . Title.

TJ175.M243 2005

621.8'11-dc22
2004061907

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 0-12-471352-1

For information on all Elsevier Academic Press publications
visit our Web site at www.books.elsevier.com

Printed in the United States of America
05 06 07 08 09 10 9 8 7 6 5 4 3 21

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID  qihre Foundation




Preface

A number of bodies linked by joints form a kinematic chain. On the basis of the presence
of loops in a mechanical structure it can be distinguished closed kinematic chains, if there
are one or more loops so that each link and each joint is contained in at least one of
them. A closed kinematic chain have no open attachment point. An open kinematic chain
contains no loop. Kinematic chains design is a vital component of modern machine design
practice. Kinematic chains are used to transmit forces and moments and to manipulate
objects. A knowledge of the kinematic and dynamic properties of these machines is crucial
for their design and control. A feature of this book and its main distinction from other books
is that it presents a different method for kinematic and dynamic force analysis of kinematic
chains. The other important feature of the approach used here is the attention given to the
solution of the problems using the symbolical software Mathematica. Methods, algorithms
and software packages for the solution of classical mechanical problems are presented. The
book presents texts that are teachable and computer-oriented.

The book will assist all those interested in the design of mechanisms, manipulators,
building machines, textile machines, vehicles, aircraft, satellites, ships, biomechanical sys-
tems (vehicle simulators, barrier tests, human motion studies, etc.), controlled mechanical
systems, mechatronical devices and many others.

This book is appropriate for use as a text for undergraduate or graduate courses in
mechanical engineering dealing with the subjects of the analysis and design of mechanisms,
vehicle dynamics, mechatronics and multibody systems and machine components design.
A basic knowledge of mechanics and calculus is assumed. The book may also be useful for
practicing engineers and researchers in the fields of machine design and dynamics, and also
biomechanics and mechatronics.




About the Author

Dan Marghitu is currently a professor at AUBURN UNIVERSITY, Mechanical Engineer-
ing Department, involved in teaching and research activities.

He received a D.E.A. from Paul Sabatier University and a Ph.D. from Southern Methodist
University.

xi



Table of Contents

Preface ix
About the Author xi
PART I KINEMATIC CHAINS 1
I.1 Introduction 3
1.2 Fundamentals 51
L3  Position Analysis 109
L4  Velocity and Acceleration Analysis 141
L5 Contour Equations 181
1.6 Dynamic Force Analysis 203
1.7 Simulation of Kinematic Chains with Mathematica™ 261
I.8 Packages for Kinematic Chains 337
L9 Simulation of Kinematic Chains with Working Model 419
PART I MACHINE COMPONENTS 433
II.1 Stress and Deflection 435
11.2 Fatigue 491
II.3 Screws 537
I1.4 Rolling Bearings 583
II.5 Lubrication and Sliding Bearings 607
I1.6 Gears 639
I1.7 Mechanical Springs 723
I1.8 Disk Friction and Flexible Belts 755
Index 773

vii



Partl Kinematic Chains







1.1

Introduction

1.1.1

Vector Algebra

Vector Terminology

Scalars are mathematics quantities that can be fully defined by specifying their magnitude
in suitable units of measure. The mass is a scalar and can be expressed in kilograms, the
time is a scalar and can be expressed seconds, and the temperature can be expressed in
degrees.

Vectors are quantities that require the specification of magnitude, orientation, and sense.
The characteristics of a vector are the magnitude, the orientation, and the sense.

The magnitude of a vector is specified by a positive number and a unit having appropriate
dimensions. No unit is stated if the dimensions are those of a pure number. The orientation
of a vector is specified by the relationship between the vector and given reference lines
and/or planes. The sense of a vector is specified by the order of two points on a line parallel
to the vector.

Orientation and sense together determine the direction of a vector. The line of action
of a vector is a hypothetical infinite straight line collinear with the vector. Displacement,
velocity, and force are examples of vectors.

To distinguish vectors from scalars it is customary to denote vectors by boldface letters.
Thus, the vector shown in Figure 1.1.1(a) 1s denoted by r or rap. The symbol |r| = r
represents the magnitude (or module, or absolute value) of the vector r. In handwritten
work a distinguishing mark is used for vectors, such as an arrow over the symbol, 7 or A_I)B,
a line over the symbol, 7, or an underline, r.

The vectors are depicted by either straight or curved arrows. A vector represented by a
straight arrow has the direction indicated by the arrow. The direction of a vector represented
by a curved arrow is the same as the direction in which a right-handed screw moves when
the axis of the screw is normal to the plane in which the arrow is drawn and the screw is
rotated as indicated by the arrow.




b

s
<
(b)

A
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FIGURE 1.1.1  Vector representations: (a) straight arrow and (b) straight and curved arrows.

Figure 1.1.1(b) shows representations of vectors. Sometimes vectors are represented by
means of a straight or curved arrow together with a measure number. In this case the vector
is regarded as having the direction indicated by the arrow if the measure number is positive,
and the opposite direction if it is negative.

A bound (or fixed) vector is a vector associated with a particular point P in space
(Fig.1.1.2). The point P is the point of application of the vector, and the line passing through
P and parallel to the vector is the line of action of the vector. The point of application can
be represented as the tail [Fig. I.1.2(a)] or the head of the vector arrow [Fig. .1.2(b)].

A free vector is not associated with a particular point or line in space. A transmissible
(or sliding) vector is a vector that can be moved along its line of action without change of
meaning.

line of action

bound vector

point of application

point of application

line of action bound vector
(a) (h)

FIGURE I.1.2  Bound or fixed vector: (a) point of application represented as the tail of the vector
arrow and (b) point of application represented as the head of the vector arrow.
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body

FIGURE 1.1.3  Transmissible vector: the force vector F can be applied anywhere along the line A.

To move the body in Figure 1.1.3 the force vector F can be applied anywhere along the
line A or may be applied at specific points A, B, C. The force vector F is a transmissible
vector because the resulting motion is the same in all cases.

The force F applied at B will cause a different deformation of the body than the same
force F applied at a different point C. The points B and C are on the body. If one is interested
in the deformation of the body, the force F positioned at C is a bound vector.

The operations of vector analysis deal only with the characteristics of vectors and apply,
therefore, to both bound and free vectors. Vector analysis is a branch of mathematics that
deals with quantities that have both magnitude and direction.

Vector Equality

Two vectors a and b are said to be equal to each other when they have the same characteristics
a=D>h.

Equality does not imply physical equivalence. For instance, two forces represented by equal
vectors do not necessarily cause identical motions of a body on which they act.

Product of a Vector and a Scalar

Definition

The product of a vector v and a scalar s, sv or vs, is a vector having the following
characteristics:

1. Magnitude.
|sv| = |vs| = |s]||v],

where |s| denotes the absolute value (or magnitude, or module) of the scalar s.
2. Orientation. sv is parallel to v. If s = 0, no definite orientation is attributed to sv.
3. Sense. If s > 0, the sense of sv is the same as that of v. If s < 0, the sense of sv is
opposite to that of v. If s = 0, no definite sense is attributed to sv.

Zero Vectors

Definition

A zero vector is a vector that does not have a definite direction and whose magnitude is
equal to zero. The symbol used to denote a zero vector is 0.
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Unit Vectors

Definition

A unit vector (versor) is a vector with the magnitude equal to 1. Given a vector v, a unit
vector u having the same direction as v is obtained by forming the quotient of v and |v|:

Vector Addition

The sum of a vector v and a vector va2: Vi + v or vz + v{ is a vector whose characteristics
are found by either graphical or analytical processes. The vectors v; and v add according
to the parallelogram law: v| + v; is equal to the diagonal of a parallelogram formed by
the graphical representation of the vectors [(Fig. I.1.4(a))]. The vector v| + v; is called the
resultant of vi and v,. The vectors can be added by moving them successively to parallel
positions so that the head of one vector connects to the tail of the next vector. The resultant
is the vector whose tail connects to the tail of the first vector, and whose head connects to
the head of the last vector [(Fig. I.1.4(b))].

The sum v| + (—Vy) is called the difference of v; and v, and is denoted by v; — v»
[(Figs. I.1.4(c) and I.1.4 (d))].

(¢) (d)

FIGUREL.1.4 Vector addition: (a) parallelogram law, (b) moving the vectors successively to paral-
lel positions. Vector difference: (c) parallelogram law, (d) moving the vectors successively to parallel
positions.
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The sum of n vectors v;, i = 1,... ,n,
n
E Vi Of Vi+Vv2+4---4v,
i=1

is called the resultant of the vectors v;, i = 1,...,n.
The vector addition is:

1. Commutative. The characteristics of the resultant are independent of the order in
which the vectors are added (commutativity):

Vi + vz =v2+4 V).

2. Associative. The characteristics of the resultant are not affected by the manner in
which the vectors are grouped (associativity):

vi+(v2 +v3) = (Vi +V2) + V3.
3. Distributive. The vector addition obeys the following laws of distributivity:

p p
v Zs,— = Z(VS,), for 5; #0, 5; € R,

i=1 i=1

n n
SZV[ = Z(sv,-), for s #0,5s € R,

i=1 i=1

where R is the set of real numbers.

Every vector can be regarded as the sum of n vectors (n = 2, 3,...) of which all but one
can be selected arbitrarily.

Resolution of Vectors and Components
Let1y, 12, 13 be any three unit vectors not parallel to the same plane (noncollinear vectors):

il =he=l=1

For a given vector v (Fig. 1.1.5), there are three unique scalars, v, v, v3, such that v
can be expressed as:

vV =Vl + vz + w313

The opposite action of addition of vectors is the resolution of vectors. Thus, for the given
vector v the vectors v1;, v212, and v313 sum to the original vector. The vector vl is called
the i component of v and vy is called the vy scalar component of v, where k = 1, 2, 3.
A vector is often replaced by its components since the components are equivalent to the
original vector.
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FIGURE I.1.6  Cartesian reference frame and the orthogonal scalar components vy, vy, v-.

Every vector equation v = 0, where v = v{1] — w21 + v313, is equivalent to three scalar
equations: vi =0, v» =0, v3=0.

If the unit vectors 1y, 12, 13 are mutually perpendicular they form a Cartesian reference
frame. For a Cartesian reference frame the following notation is used (Fig. I.1.6):

and

The symbol L denotes perpendicular.
When a vector v is expressed in the form v = v+ vy] + vk, where 1, J, k are mutually
perpendicular unit vectors (Cartesian reference frame or orthogonal reference frame), the

magnitude of v is given by
vl = P2 +92 442

KINEMATIC CHAINS AND MACHINE COMPONENTS DESIGN



The vectors v, = v,1, v, = vy, and v. = v_k are the orthogonal or rectangular component
vectors of the vector v. The measures v,, vy, v. are the orthogonal or rectangular scalar
components of the vector v.

Ifvi = via+ vy + vizk and v2 = va,1 + vayg + vo-k, then the sum of the vectors is

Vi4+va = (viy +v)r+ (viy + Vz,v)J + (viz +v2)vizk.

Angle Between Two Vectors

Two vectors a and b are considered. One can move either vector parallel to itself (leaving
its sense unaltered) until their initial points (tails) coincide. The angle between a and b is
the angle 6 in Figures 1.1.7(a) and L[.1.7(b). The angle between a and b is denoted by the
symbols (a, b) or (b, a). Figure 1.1.7(c) represents the case (a,b) = 0, and Figure 1.1.7(d)
represents the case (a, b) = 180°.

The direction of a vector v = vy1 + vyJ + v K relative to a Cartesian reference, 1, J, k,
is given by the cosines of the angles formed by the vector and the respective unit vectors.

a
g (a.b) = 6
(a)

S /

(h)
(a.b) =0 (a.b) = 180°

(c) ()

FIGURE I.1.7 The angle 6 between the vectors a and b: (a) 0 < 6 < 90°, (b) 90° < 6 < 180°,
(c) 8 =0° and (d) 6 = 180°.
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These are called direction cosines and are denoted as (Fig. 1.1.8):
cos(v,1) =cosa = [; cos(v,)) =cos B = m; cos(v,K) =cosy = n.
The following relations exist:
vy = |v|cosa; vy = |v|cos B v, = |v|cosy,

Pim*>+n*=1, *+ v.g + v2 =12).

o]

FIGURE 1.1.8 Direction cosines.
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Scalar (Dot) Product of Vectors
Definition
The scalar (dot) product of a vector a and a vector b is
a-b=b>b-a=a||b|cos(a,b).
For any two vectors a and b and any scalar s
(sa)-b =s(a-b) =a-(sb) =sa-b.

If

a=aa+a,)+ak,
and

b= ba+byy+ bk,
where 1, J, k are mutually perpendicular unit vectors, then

a-b=ab+ayby+ab:.

The following relationships exist:

1-r1=)-J=k-k=1,
1-J=)-k=k-1=0.

Every vector v can be expressed in the form
v=1-vi+})-vj+k-vk.
The vector v can always be expressed as
v=va+v)+ vk
Dot multiply both sides by 1
1-V="Vd-1+w1-]+vi1-k
But,
1-1=1, and 1-J=1-k=0.

Hence,

Introduction
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