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Preface

Lanthanides and actinides comprise about one-quarter of the known chemical elements col-
lected in the periodic table. Because of their complex electronic structure, the significant
electron correlation effects, and the large relativistic contributions, the f-block elements are
probably the most challenging group of elements for electronic structure theory. In 1987
Pyykkd reviewed the available relativistic electronic structure calculations for f-element
molecules (Inorganica Chimica Acta 139, 243-245, 1987). Of the 59 listed studies, 53 dealt
with actinides and only 10 with lanthanides. The applied computational methods comprised
ab initio Dirac-Hartree-Fock one-center expansion and Dirac-Hartree-Fock-Slater calcula-
tions, quasirelativistic all-electron X, -studies, and semiempirical valence-only approaches
like relativistic extended Hiickel theory. None of these studies took into account static
electron correlation explicitly using a multi-configurational wavefunction or included at
an ab initio level the effects of dynamic electron correlation. No applications of modern
density functional theory to f-element molecules were reported either. The treatment of
relativity included the Dirac one-particle relativity in a few cases explicitly, but mostly in
some approximate form, whereas corrections due to the Breit two-particle interaction or
arising from quantum electrodynamics were entirely neglected. Relativistic effective core
potentials were only available for a few actinides, which certainly also hampered a routine
exploration of lanthanide and actinide chemistry with quantum chemical approaches.

Tremendous progress was made in dealing with lanthanide and actinide systems since the
1987 review of Pyykko appeared, and the field continues to develop quickly. The current
book aims to provide the reader an overview of those state-of-the-art electronic structure
theory approaches that have been successfully used for f-element systems so far and sum-
marizes examples of their application. The 16 chapters were written by leading experts
involved in the development of these methods as well as their application to various aspects
of f-element chemistry. From the results of several studies discussed in these contributions it
becomes apparent that quantum chemists successfully conquered the field of lanthanide and
actinide chemistry and can provide very valuable contributions not merely supplementing
experimental studies, but also frequently guiding their setup and explaining their outcome.
Moreover, with largely improved theoretical methods and computational resources at hand,
it also became possible to obtain new insights with respect to the interpretation of the
electronic structure of f-element compounds.

Despite these many encouraging developments, it is appropriate to say that when it comes
to lanthanides and actinides modern electronic structure theory currently can accomplish
many things, but certainly not all. It is also clear that this book can only provide a snapshot
of the current state of affairs. A number of promising computational approaches, e.g., local
electron correlation schemes or F12-dependent wavefunctions, are currently developed and
already successfully applied to non-f-element systems. They will during the next years most
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likely significantly extend the array of available methods for quantum chemical studies of
lanthanides and actinides. Thus more exciting developments can be anticipated.

Finally 1 would like to thank all authors of the chapters for their excellent contribu-
tions. My thanks also go to the staff at Wiley, i.e., Sarah Higginbotham, Sarah Keegan,
and Rebecca Ralf, for their guidance and support during this book project. Last but not
least, I'm grateful to Mrs. Peggy Hazelwood for copy-editing and to Mr. Yassar Arafat at
SPi for final handling of the proofs.

Michael Dolg
Cologne
May 2014
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