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Preface

There are now available several books about non-crystalline solids.
E. A. Davis and I published Electronic processes in non-crystalline
materials in 1971, with a second edition in 1979. S. R. Elliott’s Physics
of amorphous materials appeared in 1984 and Richard Zallen’s
Physics of amorphous solids in 1983. There are also books in the
Springer series in which several authors share, for instance
Fundamental physics of amorphous semiconductors (ed. F. Yone-
zawa, 1980), and The physics of amorphous silicon (ed. J. O.
Joanopoulos and G. Lucovsky, 1984). On the related problem of
highly doped semiconductors there is the excellent book of Shklovskii
and Efros (1984).

My aims in adding yet another book mainly on the theory are the
following. The first is to provide a reasonably small book which I
hope can serve as an introduction both for students of experiment and
of theory. The next is to bring my earlier book with Davis up to date;
so much has happened since 1979 that much of the theory presented
there is in need of revision. And finally, I hope to show more fully
that in my earlier books that non-crystalline semiconductors are by no
means the only materials to which the concepts described here can be
applied; vitreous silicon dioxide, amorphous metals, and impurity
bands in doped semiconductors will play an equal role.

I have called this book Conduction in non-crystalline materials
because it is here that the theory differs most from that for crystals.
But conduction includes photoconduction, effects of a magnetic field,
and so on, and so optical and magnetic effects can by no means be
excluded.

Finally I would like to thank several colleagues who have looked
through all or parts of the manuscript, particularly E. A. Davis, M.
Kaveh, and M. Pepper.

Cambridge N.M.
April 1986
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1 Introduction

1.1. Conduction in crystalline systems

Before the appearance of quantum mechanics we had little under-
standing of why some solids, such as the metals, were good
conductors of electricity and others were not. The Hall effect gave a
measure of the number of free electrons in a metal, the Hall constant
Ry being, according to theories then available, equal to 1/nec, n
being the number of electrons per unit volume, e the electronic
charge, and c the speed of light. From the experimental values of this
quantity it appeared that the number of free electrons in a metal was
of the same order as the number of atoms. In insulators, on the other
hand, all electrons seemed to be stuck; none were free to move. This
could not be explained, nor could many other properties of solids. A
major success of electron theory was, however, the explanation of the
Wiedermann—Franz ratio of the electrical (o) to the thermal (K)
conductivity of metals (Lorentz 1905); theory gave

K/o =2(kg/e)*T

where kg is the Boltzmann constant and T the absolute temperature.
This is in fair agreement with experiment. But outstanding problems
were, why the mean free path, particularly at low temperatures, is so
large in comparison with the interatomic distance, and why the free
electrons do not contribute a large term (3nkg) to the specific heat, in
addition to that (3Nkg) from the thermal vibrations. Here n is the
number of electrons per unit volume and N the number of atoms.
Pauli in 1926 first applied the Fermi-Dirac statistics to account
for the analogous problem of the paramagnetism (why the free
electrons do not contribute a large paramagnetism equal to nu®/kgT,
u being the magnetic moment of the electron). Arnold Sommerfeld,
who for decades had presided over the outstanding school at Munich,
saw Pauli’s paper in proof (Hoddeson and Baym 1980) and extended
it to the problem of the specific heat. If Fermi—Dirac rather than
classical Boltzmann statistics describe the energies of the electrons,
these will be spread over a range of energies equal to Er, the Fermi
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Fig. 1.1. X-ray emission bands of light metals (O’Bryan and Skinner 1934).

energy, of the order of several electron volts (¢V) and therefore large
compared with kgT’; only a fraction ~ksT/Er of them would have
any thermal energy. Thus the internal energy would be ~n(ksT)*/ E¢
and the specific heat ~nk3T/Eg. That the electron energies were
indeed spread over a range of several eV was first shown experimen-
tally through the X-ray emission band of light metals by O’Bryan and
Skinner (1934); some of their results are shown in Fig. 1.1. A
small specific heat linear in T at low temperatures was first observed
in silver in 1934 by Keesom and Kok in the Netherlands; their results
agreed well with the theory for a free-electron gas (Fig. 1.2).
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T

L
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Fig. 1.2. Linear term in the specific heat of silver (Keesom and Kok 1934).
The full line shows the theoretical value.
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Fig. 1.3. Showing a typical wave function of type (1.2) using a tight binding
model; the diagram shows the real or imaginary part. (From Ashcroft and
Mermin 1976, p. 185, Fig. 10.7.)

Sommerfeld, however, did not address the problem of an
electron moving in the periodic field of a crystal. This was first done
in a seminal paper by Bloch (1928), who considered the Schrédinger
equation

2m, -
Ve +Z';—1(E—V)1p=0 (1.1)

where V(=V(x, y, z)) is a periodic function of position. Here v is
the wave function and V?= 3?/6x*+ 8%/8y? + 5%/3z% The solutions
of such an equation are

¥ = exp(ik - u(x, Y z) 1.2)

where u(x, y, z) has the same periodicity as V. A typical solution is
shown in Fig. 1.3. This solution represents a plane wave modulated
by the crystal field. It does not show any scattering; the wavevector k,
and thus the momentum of an electron, has a constant value. Thus
Bloch could argue that the long mean free paths observed at low
temperatures were to be expected. Resistivity is a result of deviations
from the perfect crystal lattice resulting either from thermal vibrations
or from the presence of impurities. As regards thermal vibrations,
scattering should be proportional to the square of the displacement of
an atom from its mean position, so that above the Debye temperature
the resistivity will be proportional to kg T'/f, where fX is the restoring
force on an atom for a displacement X. Bloch also showed how the
possible energies E(k,, ky', k,) of an electron were divided into zones
(the Brillouin zones) with gaps between them.

A. H. Wilson (1931) first pointed out that the model gives a clear
distinction between metals and insulators. In metals one or more
zones are partly occupied, so that a surface in k-space (the ‘Fermi
surface’) separates occupied from empty states; the Fermi surface
is a sphere only if E(k) is a function only of the magnitude of k, for
instance equal to const |k[|% In insulators all zones are full or empty,
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and there is a gap between the highest occupied band (the valence
band) and the lowest empty band (the conduction band). Thus
electrons are not ‘stuck’; on the contrary they are mobile, but unless
an electron is removed from the valence band thermally or by the
absorption of radiation, exactly as many electrons move in one
direction as in the other. Moreover, an (extrinsic) semiconductor is a
material in which impurities (dopants) provide occupied states with
energies just below the conduction band, so that at room temperature
many or most of the electrons are free to move.

As is well known, this model of Bloch and Wilson has survived
for the treatment of semiconductors throughout the enormously
important developments of germanium and silicon technology, which
have taken place since the end of the Second World War. We shall
show, however, particularly in Chapter 7, that, since the existence of
zones depends on the assumption that the material is crystalline, it is
not adequate to account for the (obvious) property of oxide glasses
that they are transparent, and therefore that a gap exists. A gap,
then, cannot depend essentially on the properties of the solution of
eqn (1.1) with a crystalline form of V(x, y, z). Gaps must exist for
some forms of V(x,y, z) appropriate to non-crystalline materials.
This will be apparent when we consider Anderson’s random potential
introduced in Chapter 3.

We will now emphasize a difference between the theories of
semiconductors and of metals. In the former, we have to do with a
low concentration of electrons in the conduction band; interaction
between them is rarely important, except in the formation of
‘excitons’ when an electron and positive hole form a bound pair. On
the other hand, in metals the interaction term e?/r,, is large, r,, being
the distance between pairs of electrons. Early work neglected this,
but it was essential to show that, in spite of this large term, a sharp
Fermi energy and a sharp Fermi surface existed. Jones et al. (1934)
were the first to show the former, in an attempt to explain the sharp
upper limit to the X-ray emission bands shown in Fig. 1.1, while the
discussion of the Fermi surface is due to Landau (1957). The sharp
upper limit is thought to exist in amorphous as well as crystalline
metals, though the Fermi surface does not. Interaction between
electrons leads to surprisingly small effects in the electrical properties
of crystalline metals, perhaps the most important being a small term
in the resistivity proportional to 7? resulting from electron—electron
collisions (Landau and Pomeranchuk 1936; Baber 1937). In non-
crystalline metals this interaction is more important as we shall see in
Chapter 5.
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We finish this section by setting down a few formulae which will
be used later in this book.

In metals, the conductivity depends only on the properties of
electrons at the Fermi surface (or in a non-crystalline material at the
Fermi energy). For a spherical Fermi surface, one can write for the
conductivity o

o =ne’t/m,
where n is the number of electrons per unit volume, e the electronic

charge, 7 the time of relaxation, and m the effective mass. The time
of relaxation is related to the mean free path / by the equation

l=vT

where v is the velocity of an electron at the Fermi surface. In terms of
I, we can write

o = ne’l/mv
= nel/keh

where kg is the wave vector at the Fermi surface. Since each state in
k-space is associated with a volume 87z, for n we have

in = (47/3)ki/87°,
where the factor 3 comes from the two spin directions; then
o = 4xkiel/12a°h.
47k is the Fermi surface area Sg, so
o = e*Syl/127°h, (1.4

an equation which will be used in this book.

Naturally these equations depend on the assumption that, if we
write a = n~} so that a is the mean distance between the electrons, [ is
large compared with a. This is called the weak-scattering limit. One of
the main themes of this book is the problem of what happens when
| ~ a. A principle due to loffe and Regel (1960) suggests that it cannot
be smaller; we shall show why in § 3.2.

1.2. Non-crystalline systems

In this book we treat conduction in the following systems.

1. Impurity conduction in doped and compensated semiconduc-
tors. In silicon or germanium lightly doped with, say, phosphorus, the
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energy, denoted by &;, needed to remove an electron from the
phosphorus into the conduction band is of order

£, = me*/2h°k>.

Here, m is the effective mass and k the dielectric constant. The wave
function of an electron attached to the phosphorus P* ion is like that
of a hydrogen atom with radius ay given by

ay = W’k /me?.
For concentrations n of dopant greater than n, where
niay,=0.25,

the material behaves like a metal, in the sense that the conductivity
tends to a finite value as the temperature tends to zero. This kind of
metal-non-metal transition cannot be treated without considering
interaction (Chapter 4). But for smaller concentrations, conduction
can take place by direct transfer of electrons from one centre to
another if the material is compensated. This means that it contains a
lower concentration of an acceptor (for instance boron). Then all the
acceptors will be negatively charged; some of the donors will be
neutral and contain an electron and others positively charged and thus
empty. The form of conduction which results is called ‘impurity
conduction’.

It has been extensively studied (cf. Shklovskii and Efros 1984).
Since the radius ay is in general large compared with the lattice
parameter, distortion of the lattice by a trapped electron and such
phenomena as polaron formation and Stokes shift have in general a
negligible influence. These systems, investigated at the very lowest
available temperatures, are therefore ideal for seeking to understand
in its simplest form the motion of electrons in a non-periodic field.
But this is a problem where electron—electron interactions play a
major role. We devote Chapter 4 to this phenomenon.

2. Non-crystalline metals. These often show interesting electrical
properties, including a negative temperature coefficient of resistance.
They can be described through concepts of the same kind as those
developed for heavily doped semiconductors, and are treated in § 2.4
and Chapter 5.

3. Polaron motion. This is a phenomenon of importance in both
crystals and some non-crystalline materials, and is discussed in
Chapter 6.

4. Non-crystalline semiconductors. The earliest investigations
were on the properties of amorphous selenium, used by the Xerox
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company in the electrostatic copying process known as xerography,
and those of Kolomiets and co-workers in Leningrad on the chal-
cogenide glasses (see Kolomiets 1964). These are glasses with, for
example, a composition such as As,Te; and also alloy glasses
containing arsenic, tellurium, silicon, and germanium. More recently
amorphous silicon containing upwards of 5 per cent of hydrogen has
been extensively studied. These materials have—in the main—the
same co-ordination number as in the crystal, if this exists; in this they
are unlike liquid and amorphous metals, for which there is no integral
co-ordination number. Thus As will normally be bounded to three
neighbours, Si or Ge to four, and Te and Se to two. The explanation
of their properties is based on the assumption that conduction and
valence bands exist, as in a crystalline material, but that the lowest
states in these bands can act as traps; they are said to be localized.
Also a fully co-ordinated material would have a gap in the energy
spectrum between the bands, but ‘defects’—that is points where the
co-ordination is abnormal—do give rise to (localized) states in the
gap. A major achievement of Kolomiets’s school was to show that the
chalcogenide glasses cannot be doped; the conductivity depends little
on purity. On the other hand doping is possible in deposited films of

. silicon, and this has led to the development of p—n junctions in

amorphous silicon and their use as photocells. These amorphous
semiconductors are treated in Chapter 7.

5. Liquid metals. These have properties which differ somewhat
from those of amorphous metals. The classical Ziman theory is
described in Chapter 2, and effects resulting from short mean free
paths in Chapter 8.

6. Vitreous SiO, and its formation by oxidation of silicon.
Vitreous silicon dioxide has one of the largest band gaps known
(~10eV). It is not, therefore, a semiconductor, but electrons and
holes can be injected, and their mobilities measured.

7. Two-dimensional conductors, particularly those in the inver-
sion layer between a semiconductor and its oxide.



2 Transport in liquid and
amorphous metals;
weak-scattering systems

2.1. Introduction

In metals, if the mean free path [ is sufficiently large, eqn (1.4) can be
used for the conductivity whether the metal is crystalline or not. In
this chapter we consider the use of this equation for non-crystalline
systems, particularly for liquid and amorphous metals.

Probably the earliest paper dealing with electrons in a field that is
not periodic is that of Nordheim (1931) on the resistivity of alloys.
For a substitutional impurity in a metal, the potential which scatters
the electrons is

Va—Va

where V, is the potential (or pseudopotential) of the atom of the
lattice and V3 of the impurity. This was dramatically shown by the fact
that the values of the increase in the resistivity of Cu resulting from
1 per cent of Zn, Ga, and Sn in solid solutions are in the ratio 1, 4, 9
(Linde 1931, 1932a, b; Mott and Jones 1936, p. 293) and thus vary
as (z — 1)? where z is the charge on the atomic core, which is one for
copper. Nordheim considered alloys (such as silver—gold) in which the
two elements are miscible over the whole range of compositions. If
we consider two elements, for which the atomic potentials are V,, Vg,
present in the ratio 1 —x, x, the average potential is

Vav = (1 - x)VA + xVB-

Thus, in each A atom the divergence from this potential is x(Vs — V,)
and in each B atom (1 —x)(V — V). The total scattering, and hence
the resistivity at low temperatures, is thus proportional to

{1 —x)x*+x(1 —x)*}{U?) =x(1 —x)(U?)

where
U= J’ WI'(VB - VA)Wk d’x
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and ( ) denotes an appropriate average over all angles of scattering.
In alloy systems such as Ag-Au and Pd-Pt, a variation of the
low-temperature resistivity p as x(1 — x) is observed.

2.2. Liquid metals

The theory of Nordheim is a weak-scattering theory; it does not
consider interference between multiply-scattered waves, and is there-
fore valid only if / >>a, where a is the distance between atoms and /
the mean free path. The same is true of the theory of the resistivity of
liquid metals, first presented by Ziman in 1961 and valid also in the
limit />>a. This work, which made use of the recently developed
theory of pseudopotentials, proposed that the scattering potential of
each atom in a solid or liquid could be replaced by a small
pseudopotential. Scattered waves from neighbouring atoms could
interfere destructively, but only interference between waves scattered
by pairs is considered. Chapter 3 discusses how to go beyond this
approximation.

The elements of Ziman’s theory are as follows (cf. Faber 1972).
First of all, since the scattering is treated as a perturbation and since
there is no axis of symmetry, the Fermi surface is taken to be
spherical and one starts therefore with the concept of a degenerate
electron gas of free electrons. Thus the amplitude scattered by two
atoms at a distance R from each other is

{1—exp(iq - R)}f(6)

where q=k —k’, the change in the wave vector on scattering, and
f(0) is the amplitude scattered by a single atom through an angle 6.
Neglecting multiple scattering, the conductivity then is given by (1.4)
with

1

;=N j S(q)(1 — cos 8) |f(8)]? 2 sin 6 d6. 2.1)
Here N is the number of atoms per cm® and S(q) is the structure
factor, given by

S(q)=N"" j (1 + exp(iq - R)}*P(R) d’x. 2.2)
P(R) is here the pair distribution function, P(R)d’x being the

probability that another atom is in the volume d’x at a distance R
from a given atom. Using first-order perturbation theory for f(8), we
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find, following Faber and Ziman (1965), for the resistivity

3z (*|u(g)l* S(g)g’ dg
P=5e02Q by 4kt (2.3)

where

v(g) = [ V(explita- 1)} 5/,

and where vg and kg are the values of the velocity and wave vector at
the Fermi surface, respectively; the integral is over the volume €.
Figure 2.1 shows schematically the behaviour of S(g) and v(q). The
possibility of applying perturbation theory depends on the fact that
v(q) is small for values of g such that S(q) is large.

One of the most successful applications of the theory is to the
temperature-dependence of the resistivity of liquid metals. This is
large and positive for monovalent metals, small and sometimes

S(q)

v(g)

Fig. 2.1. The structure factor S(g) and pseudopotential v(g) for a liquid
metal; g, and g, show the values of 2k for monovalent and divalent metals.
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Fig. 2.2. The function S(q) for liquid lead determined from neutron
scattering at different temperatures. (a) 340 °C; (b) 600°C; (c) 780°C; (d)
1100 °C. (From North ez al. 1968.)

negative for divalent metals. This is explained as caused by the
variation with temperature of the structure factor S(g), which can be
determined from neutron diffraction. Figure 2.2 shows the results of
North et al. (1968) for liquid lead at various temperatures. This
behaviour is typical. For monovalent metals the resistivity is deter-
mined by the left-hand side of the peak. It is observed that the
resistivity of monovalent liquid metals at constant volume is propor-
tional to the absolute temperature; this suggests that S(g) is also
proportional to T over the range for which |u(g)|” is significant. For
very low g, the structure factor will be given by the Ornstein—Zernike
formula

S(q) = ksT/BR

where B is the bulk modulus and Q the atomic volume. This equation
describes the contribution from macroscopic fluctuations of density



