INFINITE-DIMENSIONAL
DYNAMICAL SYSTEMS IN

ATMOSPHERIC AND
‘OCEANIC SCIENCE

Guo Boling
Huang Daiwen

’ \ :
i ifi ZHEJIANG PUYBLISHING UNITED GROUP
\s World Scientific ZHEJIANG SCIENCE AND TECHNOLOGY PUBLISHING HOUSE




INFINITE-DIMENSIONAL
DYNAMICAL SYSTEMS IN

ATMOSPHERIC AND
OCEANIC SCIENCE

..". j\ -j-’;‘.
; g -g:"..a.
Guo B ‘ 7

Huang Daiwen

. 2] ZHEJIANG PUBLISHING UNITED GROUP
“bw""d Scientific 7] 7HEJIANG SCIENCE AND TECHNOLOGY PUBLISHING HOUSE



BB RS B (CIP) K&

KA G HEsh 11 R 50 3650 1 AR, BACE.
— BUM - BITTRRABOR L, 2014. 4
ISBN 978-7-5341-5935-0

[. Ok 1. O Q@ M. ORKBhH%E—
Y Qs h—3ar N, OP433 @P7312

HE R A E 35 CIP Bl 7(2014 )% 051406 5

# B RE.BELFENNERF(FEAR)
Infinite—Dimensional Dynamical Systems in Atmospheric

= & FHR(Guo Boling) #fX 3 (Huang Daiwen)

H AR % 17 W RFEER B4k World Scientific

15 HE www.zkpress.com www.world scientific.com
L
Hitik UM TR B S 347 5 HEBURAY : 310006
% Z L :0571-85170300-61717

HE KR B ATy ROk B TAE=
Ep Rl @ RS N A PR F
¥ A& 787x1092 1/16 Ep 3k 20.75
= #1382 000
ki & 20144E4 A% 1R 2014 4F 4 H 55 1 IENRI
H £ ISBN 978-7-5341-5935-0( # T R4 A H R4t )
ISBN 978-981-4590-37-2( World Scientific)
E # 78.00 5T

RALERE BE bR
P43 H BRI R |tk 5T 55 B0 R A B0, A 4 67 S0 4% )

viAEgiE e b Brmizit A #
DALEST kT DAEESy W X



INFINITE-DIMENSIONAL
DYNAMICAL SYSTEMS IN

ATMOSPHERIC AND
OCEANIC SCIENCE



INFINITE-DIMENSIONAL
DYNAMICAL SYSTEMS IN

ATMOSPHERIC AND
OCEANIC SCIENCE

s

Guo Boling
Huang Daiwen

Institute of Applied Physics and Computational Mathematics, Beijing, China
& R Zhejiang Science and Technology
\\he World Scientific Publishing House



Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

and

Zhejiang Science and Technology Publishing House
No. 347 Tiyuchang Road
Hangzhou, China

Library of Congress Cataloging-in-Publication Data
Guo, Boling.
Infinite-dimensional dynamical systems in atmospheric and oceanic science / by Boling Guo &
Daiwen Huang (Institute of Applied Physics and Computational Mathematics, China).
pages cm
Translated from Chinese.
Includes bibliographical references.
ISBN 978-981-4590-37-2 (hardcover : alk. paper)
1. Atmospheric circulation. 2. Dynamic meteorology. 3. Marine sciences. 1. Huang, Daiwen.
I1. Title.
QC880.4.A8G86 2014
551.4601'185--dc23

2013050767

British Library Cataloguing-in-Publication Data
A catalogue regord for this book is available from the British Library.

The ISBN for China market is 978-7-5341-5935-0

Copyright © 2014 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.

Printed in Singapore



Preface

The intent of the book is to introduce some results in the study of partial
differential equations and infinite-dimensional dynamical systems in geo-
physical fluid dynamics, which has been mainly focused on the dynamics
of large-scale phenomena in the atmosphere and the oceans. In the past
several decades, there are many research works in the field. In 1979, Zeng
Qingcun made some pioneering research on the theories of somé mathe-
matical models governing the atmospheric and oceanic motions. His works
have aroused many mathematicians’ interest in the study of the theories
about partial differential equations of the atmosphere and the oceans. From
the 1980s, Chou Jifan and his collaborators made many works on the glo-
bal analysis theory about the dissipative primitive equations of the atmo-
sphere. In 1992, Jacques Louis Lions, Roger Temam and Wang Shouhong
introduced a new formulation of the dissipative primitive equations of the
atmosphere, and proved the global existence of weak solutions of these
equations. Later, they also made many works on partial differential equa-
tions in the atmospheric and oceanic dynamics. Peter Constantin, Andrew
Majda and Esteban G. Tabak studied the formation of strong fronts in the
surface quasi-geostrophic equations. Andrew Majda and his collaborators
contribute many theoretical and numerical works on PDEs and waves for
the atmosphere and oceans. Mu Mu and Li Jianping both studied exten-
sively on PDEs in the atmospheric and oceanic dynamics. In 2005, Cao
Chongsheng and Edriss S. Titi proved the global well-posedness for the 3D
viscous primitive equations. Recently, Zhou Xiuji presented the necessity
and great meaning of the atmospheric random dynamics research. From
2006, the authors obtained some results about the primitive equations and
some stochastic PDEs in the atmospheric and oceanic science.

This book consists of five chapters. In Chapter 1, we briefly recall some



viii  Infinite-Dimensional Dynamical Systems in Atmospheric and Oceanic Science

partial differential equations of the atmosphere and oceans. In Chapter 2,
the quasi-geostrophic models of the atmospheric and the oceanic motions
are introduced. In Chapter 3, we consider the initial boundary value prob-
lem for the three-dimensional viscous primitive equations of the large-scale
moist atmosphere and oceans. In Chapter 4, we consider some stochastic
models in the atmospheric and oceanic science. Chapter 5 is reserved for
stability and instability theory of waves for the atmosphere and oceans.

The authors would like to thank Academician Zeng Qingcun, Academi-
cian Mu Mu, Prof. Liu Shishi, Prof. Li Jianping and so on. We acknowl-
edge the generous support of both National Natural Science Foundation
and Ministry of Science (grant No. 91130005, 11271052) and Technology of
China (grant No. 2013CB834100).

Guo Boling
Beijing
December, 2013
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Chapter 1

Nonlinear Equations of the
Atmospheric and the Oceanic Motions

There are usually two methods for predicting long-term weather and cli-
mate. First, by statistical methods, we can use the current climate, the his-
torical record and numerical analysis to predict the future climate and the
possible global climatic changes. Second, because air is compressible, and
seawater is incompressible, by dynamical methods, we consider that the fu-
ture status of climate is a consequence determined by the current status and
the physical principles dominating these changes, thus we study equations
and models describing the atmospheric and oceanic motions. Regarding
weather prediction as an initial-boundary value problem in mathematical
physics, we can establish numerical weather prediction models based on
mathematical physical equation. ;

Numerical weather prediction is an outstanding applied research
achievement of atmospheric science in the 20th century, of which theoretical
foundation is the atmospheric dynamics. In 1922, Richardson introduced
the concept of numerical weather prediction for the first time ([183]). His
idea is that through solving the complete primitive equations governing the
atmosphere motions numerically, one can simulate the evolution process
of atmosphere, thus may predict weather quantitatively. Due to the weak
calculation ability at that time, the dream of numerical weather prediction
did not exist. Applying the long-wave theory and the scale-analysis theory
established by Rossby and others, Charney set up a two-dimensional
geostrophic model. With this model, he and his collaborators successfully
made true 24-hour numerical weather prediction on the ENIAV computer
of the Institute for Advanced Studies in Princeton for the first time. Along
with the boom of atmosphere science and the enhancing of data dealing
ability and numerical calculation ability of computer, researchers turn to
numerical weather prediction by the primitive equation models from 1960s
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([112,147,181,218]), greatly extend the time-range of numerical weather pre-
diction. Afterward researchers started to make long-term numerical weather
prediction, climate forecasting and numerical simulation of atmospheric cir-
culation by some primitive equation models of the atmosphere and oceans.
To actualize long-term numerical weather prediction, climate predic-
tion and numerical simulation of atmospheric circulation based on physi-
cal methods, the first thing is to establish some atmospheric and oceanic
dynamical models, which are the nonlinear partial differential equations
with initial-boundary value conditions which govern the atmospheric and
oceanic motion. In this chapter, we mainly present basic and primitive
equations and their boundary conditions which govern the atmospheric and
oceanic motion. For more detail see [220], and also [84,145,162,205,211].

1.1 Basic Equations of the Atmospheric and the Oceanic
Motions

1.1.1 Basic Equations of the Atmosphere

Regarding air and seawater as continuous media, one can use the Euler
method to describe the atmospheric and oceanic motions. In the inertial
coordinate frame (the coordinate axis is fixed with respect to the stellar),
according to the Newton second law, the momentum conservation equation
of the atmosphere is given by

d,;V; 1
T —;gradgp + g1 + D,

where V1 is the absolute velocity of the atmosphere (velocity in the inertial

d;V ov
Idt L = tI +(V;-V3)V | is the absolute acceleration

(acceleration in the inertial coordinate frame), p is the density of air, p is

coordinate frame),

the atmospheric pressure, ——gradsp is the pressure-gradient force, g is

the gravity, and D is a molecular viscous force (molecular friction force,
dissipative force), which is a dissipative force caused by air internal friction
or turbulent momentum transmission.

In general, researchers are concerned with the relative motions of the
atmosphere to the earth. So taking a coordinate frame rotating together
with the earth as a reference frame, researchers can observe atmospher-
ic relative motions. Suppose that the angular velocity of rotation in the
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rotating coordinate frame is €2 (that is the rotational angular velocity of
dVvV
the earth), V is the atmospheric relative velocity, Yy is the atmospheric

relative acceleration in the rotating coordinate frame, then

Vi=V+Qxr,

4,;V; dv;
— OxV
dt raluRLEC L

where r is the radius vector. The proof of the second equation above

appears in section 1.5 in [172]. According to the previous three equations,
we get in the rotating coordinate frame the atmospheric momentum
conservation equation

dVvV 1
— = ——gradsp+g9g—2Q x V + D, (1.1.1)
dt P
where g = gy + 2%r is commonly referred to gravity ({2 is the value of the
earth rotation angular velocity), —2€ x V is the Coriolis force, £%r is the

inertial centrifugal force,

d 0
&—&‘FV'V;},

is the substantial derivative (often called the total derivative).
According to the mass conservation law, the continuity equation is
given by

d
d—f + pdivaV = 0. (1.1.2)

In general, when describing large-scale motions of the troposphere and
the stratosphere, one may consider dry air as ideal gas, and can get the
atmospheric state equation

p= RpT, (1.1.3)

where the vaporation in the atmosphere is negligible, T' means the tempe-
rature absolute term of the atmosphere, and R = 287 J-kg 7 'K~! is a gas
constant of dry air.
According to the first law of thermodynamics, the atmospheric ther-
modynamic equation is given by
ar  dy 4@

“ar TPa T @
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d

where ¢, = 718 J'kg7'K~!, and ch is the quantity of heat per unit mass
C

of air obtained from external environment per unit time. Applying (1.1.3),

we have
ar _d; _1dp d,  RTdp  d,
dt — dt  pdt  Tdt  p At Tt
Combining the above two equations together, we get
AT BT _dq
Pt p dt  dt’
where ¢, = ¢, + R is specific heat at constant pressure.
Equations (1.1.1)-(1.1.4) are called the fundamental equations of
dry air, where the unknown functions are V', p, p, and T in these equations.
If D and % are fixed, equations (1.1.1)-(1.1.4) are self-closed.

When one has to consider vaporation in the air, the moist air state
equation is

(1.1.4)

p = RpT(1+ cq), (1.1.5)

where ¢ = Pl s the mixing ratio of water vapor in the air, and p; is

p
the density of water vapor in the air. Here, c represents positive constant
varying with context. ¢ = 0.618 in (1.1.5). The thermodynamic equation
of the moist atmosphere is

dT  RT(l+cg)dp dQ

Tt P 1.1.6
T P dt  dt ( )
the conservation equation of the water vapor in the air is
d 1
e N (1.1.7)
dt p

where W is the condensation ratio of steam per unit volume, and W, is
the volume change ratio of unit mass steam due to horizontal and verti-
cal diffusions. Equations (1.1.1), (1.1.2) and (1.1.5)-(1.1.7) are called the
equations of the moist atmospheric.

1.1.2 Basic Equations of the Oceans

Suppose that there are massless source-sinks within the oceans. In the
rotating coordinate frame, the equations of oceans consist of the following
equations:
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the momentum conservation equation

dv
Pt
the continuity equation

= —gradsp + pg — 2p2 X V + D,

d
oo + pdivgV =0,

dt
the state equation
p=f(T,S,p),

the thermodynamic equation

dT

E - Ql;
and the salinity conservation equation

ds

d_ - Q27

i

where S is salinity, J; is the heat source per unit mass seawater derive from
the external environment in unit time, and Q- is the salt source per unit
mass seawater derive from the external environment in unit time.

Since the equations above are too complex, one has to do some simplifi-
cation. Generally, one takes Boussinesq approximation, that is, consider
p in pg and the state equation as unknown function, but p in other position
as constant pg. Moreover, we use the following approximation equation to
replace the above state equation

p = po[l = Br(T — To) + Bs(S — So)l,
where 8r and g are positive constants, and Tp, Sp are the reference values
of temperature and salinity, respectively. Thus, we get the equations of
oceans as

dv
Pog = —gradsp + pg — 2p0Q2 X V + D, (1.1.8)
divsV =0, (1.1.9)
p=po[l = Br(T — Tp) + Bs(S — So)], (1.1.10)
dT
= = (1.1.11)
dsS
— = (Jo. 112
2 _a, (1.1.12)

Remark 1.1.1. State equation (1.1.10) is an empirical equation, which
appears in [212]. The more general form is

P = po 1_5T(T_T0)+ﬁS(S_SO)+$ ;

where ¢, is a positive constant, and this equation appears in section 2.4.1
of [205].



