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PREFACE

Since its inception the Institute for Scientific Interchange (I.S.I.)
has promoted a well defined programme for the development of Science via
Workshops in many branches of Physics. The lectures contained in this
volume were delivered by invited and contributed speakers during the
Workshop on "Physics and Applications of amorphous semiconductors”.

This was the first Workshop organized by the ISI on the subject. It was
a truly international event and the 1level of participation was an
indication of the interest in amorphous semiconductors and their
applications.

The subject is of great interest in the field of applied physics, in
that it offers technological solutions that can be adopted in many
applications. Knowledge of the physical properties of these new
materials allows to forward their use as optoelectronic devices, solar
cells and so on.

The topics have been arranged in logical order. First, the Basic
Concepts underlying the physics of amorphous semiconductors have been
treated. Some time was spent on Preparation Methods of amorphous
semiconductor and devices as well as on the Staebler-Wronski effect
influence on the behaviour of amorphous solar cells. Finally, some new
materials and their characteristics were examined.

I should Tlike to express my sincere thanks to the sponsors of the
Workshop.

First of all to the [.S.I. and, as in duty bound to the President Prof.
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T. Regge and to the Director Prof. M. Rasetti, to the Politecnico di
Torino, to the Banca Popolare di Milano, to the Cassa di Risparmio di
Torino and finally the ENEA represented by Prof. C. Boffa as a member of

the Administration Council.

(Prof.sa F. Demichelis)
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TOWARDS A SIMPLE DESCRIPTION
OF THE ELECTRONIC STRUCTURE OF o-SEMICONDUCTORS

E.N. Economou
Research Center of Crete and
Department of Physics, University of Crete
Iraklion, Crete, Greece

ABSTRACT

Assuming that an a-semiconductor can be thought of as resulting from an
ideal lattice (IL) by a disordering procedure we demonstrate that many
important electronic features associated with the band edges (such as the
Urbach tails, dc conductivity, etc.) can be obtained in terms of a few gross
features of the IL and the variance of the disorder.

I. INTRODUCTION

Amorphous materials in general, and tetrahedral thin films in particular,
present great difficulties for their understanding due to the simultaneous
influence of several complicating factors. Such factors are : (a) the effects of
disorder on the motion of independent electrons; (b) the effects of
metastability and partial equilibration, which open up the possibility of new
modes involving ionic motion other than phononic; examples of such modes
are the so called traveling defects (td); (c) many body effects such as
electron-electron interactions (an example of which is the D™ state)
electron-phonon interactions (e.g. polaron formation) and electron traveling
defect interaction responsible for the so-called S-W mode; and (d) effects due
to the synergy of the above.

In this paper we concentrate on one aspect only of the previously mentioned
complications, i.e. on the effects of disorder on independent electrons. After
two decades of intensive research on this subject a picture has emerged the
basic characteristic of which are rather simple and possess a certain degree of
universality. The situation is somehow similar to the effective mass
approximation in the theory of crystalline materials, where a single parameter,
the effective mass (or more precisely the effective mass tensor), determines



the main characteristics near the band edge. In the present case of disordered
systems again a few parameters (describing the reference ideal lattice system
from which the real system is thought to develop through a disordering
procedure and the degree and type of disorder) determine the main
characteristics near a pseudoband edge and its tails.

It is also remarkable that, with a little sacrifice in accuracy, one can obtain
reasonable quantitative results by using quite elementary theoretical techniques
(essentialy the basic quantum mechanics of motion in a constant (or periodic)
potential and in the presence of a single local potential well).

II. INPUTS

The motion of an independent electron in a random potential is assumed to
be described by a Hamiltonian of the form :

H=H,+ H; <Hp>=0, 2.1)

where H, is the Hamiltonian for a reference “unperturbed” system and H,
incorporates the randomness. Although H, may actually be very complicated
some features of the disordered system may depend on only two parameters
of H, : the effective mass m* (which determines the coefficient of the square
roof singularity in the DOS, @,(E), near the band edge) and the real part of
the Green's function, G,, at the band edge E,°

0,(E")dE’
Gy = G = /| —— 2.2)
B - E
Of course other aspects of the "unperturbed” part, such as van Hove
singularities in the DOS, @,(E), may influence the behavior of physical
quantities.

The most important parameter of the disordered part H; is the standard
deviation w2, which as far as certain quantities are concerned, could fully
characterize the disorder. Some other important quantities depend not only on
w2 but on the form of the tails of the probability distribution(s) in H,. Finally
there may be quantities which require for their determination the full
knowledge of the probability distribution(s) which characterize H,.



IIl. MAIN FEATURES OF THE DENSITY OF STATES AND THE
EIGENFUNCTIONS

Here we describe briefly how the DOS p of the disordered system results1-3
from the “unperturbed” DOS, g,(E). As the disorder sets in, there is first an
almost rigid displacement of @,(E) (near the band edge), widening the band,
and moving the unperturbed band edge E,° to a new position E;, by an
amount equal to

[E, - E°| = w2 G, @3.1)

The approximate result (3.1) is simply the second order perturbation result for
the energy levels, as one can easily convince himself by combining (3.1) with
2.2).

The second effect of disorder on the DOS, besides the rigid displacement, is
the development of tails extending beyond E;,. One can distinguish three
regions in the taill~3 : the near tail (NT) or Halperin—Lax4 region, which lies
around E,; the deep tail (DT) or Urbach® region; and the very deep tail
(VDT) or deep defect region. The VDT and DT reglons correspond to
eigenstates bound around a single local potential well (or potential bump for
the top of the valence band).

Let us remind the reader the main results concerning the elementary problem
of the bound ground state in a three dimensional local (i.e. short range)
potential well. We denote by & the depth of the potential well and by a its
linear extent; E is the ground bound state energy and A is its decay length.

For very deep potential wells (|| >> €, = 12/2ma?), the bound ground state
is essentially inside the well (A 5 0.1 a) and |E| is proportional to |e], i.e.

[E| = le] - ¢, (3.2)
There is an intermediate regime, where the wavefunction is, roughly spesaking,
half in half out of the potential well (0.4 s A/a s 1.4); in this regime the
ground bound state energy is approximately proportional to the square of the

potential well depth

|E| = A2 - B ; E; slElsE (3.3)



In Table 1 we give the values of A, E; and E, for various cases,2.

TABLE 1 : Values of the constant A and range of validity of Eq.(2.3) for
various cases. TB denotes tight binding model with 12 V being
the bandwidth.

m*

Case Description A Eq E, Energy
Step Potential Well Yes 0023 | 05 6 12/2m"a?
of 3-d Volume a3
Gausssian Potential Well Yes 0.010 0.3 6 12/2m" a2
of 3-d Volume a3
TB, Semicircular DOS No 0.064 0.2 3 Vv
TB, Simple Cubic No 0.065 0.2 3 v
a-Si:H, Valence Band No 0.007 0.1 0.3 eV
a-Si:H, Conduction Band No 0.003 0.1 0.3 eV

Finally, let us mention that there is a critical value of €, €, such that for
le| < le| there is no bound state in a 3-d potential well. For |e| just above
the critical value €, A tends to blow up (A - |e - €/"1/2, which means that
the bound eigenfunction is essentially outside the potential well) and

E-le-eft;e~c¢ (3.4)
Let us now return to the three regions of the tail in the DOS.
The VDT region corresponds to states bounds inside deep fluctuations, where
Eq.(3.2) is approximately valid. Due to its linearity (between |E| and lel) the
distribution of |E| follows the distribution of |e|, which means that the DOS in

the VDT region is the same as the probability distribution of €, p(e)

o(E) = p(IE| + ¢,) ; VDT or defect region 3.2")



The DT or Urbach region corresponds to the intermediate regime of bound
states in isolated local potential wells for which Eq.(3.3) is valid. Hence the
DOS in the Urbach regime is given by

1 1 / |El + B
() = — ——————= p (V ———) ; DT or Urbach region (3.3')
A

2 JA(E| + B)

Note that a Gaussian distribution of € (which is expected to be very common
in this intermediate regime), p(e) - exp(-e2/2w2), will give for the DOS

o(E) - exp(-|E|/2w2A) ; DT or Urbach region 3.3)

Eq.(3.3"") provides a simple explanation for many features observed in the
optical absorption of ionic crystals (where the disorder is of thermal nature)
and amorphous semiconductors.

One may be tempted to say that the NT or Halperin-Lax region corresponds
to loosely band states for which Eq.(3.4) holds. Indeed, Eq.(3.4) combined
with a Gaussian probability distribution p(e) would give a DOS @(E) -
exp(-/|E|/C) in qualitative agreement with more sophisticated treatments2:4:0,
In spite of this positive result, the actual situation is considerably more
complicated, because the localization length in this regime is larger than the
average distance between potential wells. As a result the eigenstates in the
Halperin-Lax regime are not localized around a single potential well but
around an appropriate cluster of potential wells. One can show2:0 that this
cluster can be replaced approximately by an effective potential well, whose
depth has always a Gaussian distribution. It is for this reason that the DOS in
this regime is always of the form exp(-v|E|/C).

It is worthwhile to note that the NT or Halperin-Lax region is usually very
narrow, and as we approach E,, the localization (or decay) length becomes
very large and finally blows up at the mobility edge E.*, which is just inside
E, (the difference |E, - E is usually less than 10 meV). On the other side
of E. we have extended eigenstates with strongly fluctuating
amplitude; however, the linear extent of these fluctuations does not exceed a
characteristic length E. The length § blows up at E_, but, as we move inside

*The mobility edge is determined by the equation k(E.) I(E.) = 0.84, where k
is the wavenumber corresponding to H, and 1 is the mean free path.



the band, rapidly diminishes and, within a region of width comparable to the
Halperin-Lax one, drops to interatomic scale. Beyond this we have regular
extended states having an essentially uniform amplitude and characterized by I,
the phase coherence length (or mean free path).

It is worthwhile to note that the results described above have been obtained
by several theoretical techniques ranging from the most elementary (that
presented here) to quite sophisticated ones2:4:6 and including the powerful
Coherent Potential Approximation (CPA). Recently, they have been verified by
detailed numerical calculations’.

Before we conclude this section let us make two remarks :

The first concerns the width of the Urbach regime or in other words the
range of validity of the exponential behavior in the DOS. Our analysis shows
that the narrower the gap, and/or the more disorder, and/or the larger the
range of the potential fluctuations, the more limited the range of the
exponential behavior is. Thus, in a-Si we expect the exponential behavior to
extend over about two orders of magnitude in the DOS and deviations even in
this regime to be observable. In a-Ge we expect an even narrower range and
more visible deviations. On the contrary for glasses such as As,Se;, where
the effective2s3 gap is about 5 eV, the range, according to Table 1, is
expected to be a little less than 1 eV for the case of As,Se; in excellent
agreement with the experimental resultsS.

The second and last remark is referred to the relation of the present
approach with the method of equilibrated ensemble. Both start with the
general expression for the DOS o(E) = / o'(E; [H]) p([H]) d[H], where o is
the DOS for a particular configuration described by [H] and p([H]) is the
probability distribution for the various configurations. Of course p([H]) can
always be written as exp(-f([H])), where f is the free energy divided by kT.
For a bound state there is a functional relation between the eigenergy E’ and
the particular configuration [H] which in principle can be inverted to give a
relation of the form [H] = g(E’). Combining the above we obtain

o(E) = /¢’ (E;E) exp(-f(g(E"))) dE’ = exp(-f(g(E))), (3.5)
since p"(E,E’) is equal to 8(E-E’).

The equilibrated ensemble method assumes that it is usually possible to expand



