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MATERIALS SCIENCE

This text is intended for a second-level course in materials science
and engineering. Chapters encompass crystal symmetry including quasi-
crystals and fractals, phase diagrams, diffusion including treatment of
diffusion in two-phase systems, solidification, solid-state phase trans-
formations, amorphous materials, and bonding in greater detail than is
usual in introductory materials science courses. Additional subject mate-
rial includes stereographic projection, the Miller—Bravais index system
for hexagonal crystals, microstructural analysis, the free energy basis for
phase diagrams, surfaces, sintering, order—disorder reaction, liquid crys-
tals, molecular morphology, magnetic materials, porous materials, and
shape memory and superelastic materials. The final chapter includes use-
ful hints in making engineering calculations. Each chapter has problems,
references, and notes of interest.

William F. Hosford is a Professor Emeritus of Materials Science and Engi-
neering at the University of Michigan. Professor Hosford is the author of
a number of books including the leading selling Metal Forming: Mechan-
ics and Metallurgy, 2/e (with R. M. Caddell), Mechanics of Crystals and
Textured Polycrystals, Physical Metallurgy, and Mechanical Behavior of
Materials.



Preface

This text is written for a second-level materials science course. It assumes that the
students have had a previous course covering crystal structures, phase diagrams,
diffusion, Miller indices, polymers, ceramics, metals, and other basic topics. Many
of those topics are discussed in further depth, and new topics and concepts are
introduced. The coverage and order of chapters are admittedly somewhat arbitrary.
However, each chapter is more or less self-contained so those using this text may
omit certain topics or change the order of presentation.

The chapters on microstructural analysis, crystal symmetry, Miller—Bravais
indices for hexagonal crystals, and stereographic projection cover material that
is not usually covered in introductory materials science courses. The treatment
of crystal defects and phase diagrams is in greater depth than the treatments in
introductory texts. The relation of phase diagrams to free energy will be entirely
new to most students. Although diffusion is covered in most introductory texts,
the coverage here is deeper. It includes the Kirkendall effect, Darken’s equation,
and diffusion in the presence of two phases.

The topics of surfaces and sintering will be new to most students. The short
chapter on bonding and the chapters on amorphous materials and liquid crystals
introduce new concepts. These are followed by treatment of molecular morphol-
ogy. The final chapters are on magnetic materials, porous and novel materials,
and the shape memory.

This text may also be useful to graduate students in materials science and
engineering who have not had a course covering these materials.

The author wishes to thank David Martin for help with liquid crystals.
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1 Microstructural Analysis

Many properties of materials depend on the grain size and the shape of grains.
Analysis of microstructures involves interpreting two-dimensional cuts through
three-dimensional bodies. Of interest are the size and aspect ratios of grains,
and the relations between grain size and the amount of grain boundary area per
volume. Also of interest is the relation between the number of faces, edges, and
corners of grains.

Grain size

There are two commonly used ways of characterizing the grain size of a crystalline
solid. One is the ASTM grain size number, N, defined by

n=2"1 or N=1+In(n)/In2, (1.1)

where n is the number of grains per square inch observed at a magnification of
100X. Large values of N indicate a fine grain size. With an increase of the grain
diameter by a factor of +/2, the value of # is cut in half and N is decreased by 1.

EXAMPLE 1.1. Figure 1.1 is a micrograph taken at 200X. What is the ASTM
grain size number?

SOLUTION: There are 29 grains entirely within the micrograph. Counting each
grain on an edge as one half, there are 22/2 = 11 edge grains. Counting each cor-
ner grain as one quarter, there is 1 corner grain. The total number of grains
is 41. The 12 square inches at 200X would be 3 square inches at 100X, so
n =41/3 = 13.7. From Equation (1.1),

= In(n)/In(2) + 1 =4.78 or 5.

The average linear intercept diameter is the other common way to character-
ize grain sizes. The system is to lay down random lines on the microstructure
and count the number of intersections per length of line. The average intercept
diameter is then £ = L/N, where L is the total length of line and N is the number
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1.1. Counting grains in a microstructure at
200X.

of intercepts. Alternatively, a rectangular grid of lines may be laid down on an
equiaxed microstructure.

EXAMPLE 1.2. Find the average intercept diameter for the micrograph in

Figure 1.1.

SOLUTION: InFigure 1.2,6 x 4 +5 x 3 = 39 inches of line are superimposed on
the microstructure. This corresponds to (39 in. /200)(25.4 mm/in.) = 4.95 mm.
There are 91 intercepts so £ = .495/91 = 0.054 mm = 54 pm.
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1.2. Finding the linear intercept grain size of
a microstructure at 200X.

For random microstructures, £ and the ASTM grain size are related. An approx-
imate relationship can be found by assuming that the grains can be approximated
by circles of radius, . The area of a circular grain, mr?, can be expressed as
the average linear intercept, ¢, times its width, 2, as shown in Figure 1.3, so
¢ - 2r = 1r?. Therefore,

r=@Q/mt or = (m/2)r.

(1.2)
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/ N\
/ \
1.3. The area of a circle, mr2, equals the 2r
average intercept times twice the radius,
22r,so &= (m/2)r. \ /
\ /
—" =
o T ——]

Thus, the area per grain is A = 2r £ = (4/7)£ 2. The number of grains per area
is (1t/4)/€2. From the definition of n, the number of grains per area is also
n[(25.4mm/in.)/(100 in.)]*. Substituting n = 2V~! = 2V /2 and equating,

(rt/4)/E% = (27 /2)(0.254)%. (1.3)
Solving for £,
? = 49322, (1.4)

Often grains are not equiaxed. They may be elongated in the direction of prior
working. Restriction of grain growth by second-phase particles may prevent for-
mation of equiaxed grains by recrystallization. In these cases, the linear intercept
grain size should be determined from randomly oriented lines or an average of two
perpendicular sets of lines. The degree of shape anisotropy can be characterized
by an aspect ratio, «, defined as the ratio of average intercept in the direction of
elongation to that at 90°:

o=24/L,. (1.5)

Relation of grain bo:ndary area per volume to grain size

The grain boundary area per volume is related to the linear intercept. Assuming
that grain shapes can be approximated by spheres, the grain boundary surface per
grain is 27tR?, where R is the radius of the sphere. (The reason that it is not 47t R?
is that each grain boundary is shared by two neighboring grains.) The volume per
spherical grain is (4/3)7R?, so the grain boundary area/volume, S, is given by

S, = (2tR?)/[(4/3)R?] = 3/(2R). (1.6)

To relate the spherical radius. R, to the linear intercept, ¢, consider the circle
through its center, which has an area of 7wR? (Figure 1.4). The volume equals
the product of this area, 7tR?, and the average length of line, £, perpendicular
to it, v = £ntR2. Therefore, (4/3)tR*> = R*E or R = (3/4)L. Substituting into
Sy = 3/(2R),

S, = 2/L. (1.7)
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1.4. The volume of a sphere = ZnR2.

Relation of intersections per area and line length

The number of intersections per area of dislocations with a surface is less than the
total length of dislocation line per volume. Consider a single line of length L in a
box of height 4 and area of A. The number of intersections per area, N4, equals
1/A4 (Figure 1.5). The length per volume is Ly = L/(hA) so Ny/Ly =h/L.
Because cos® = /L, N4/Ly = cos 6. For randomly oriented lines, the number
oriented between 0 and © + d0 is dn = ndf, where df = sin 0d0. For randomly
oriented lines, Ns/Ly = f 2 c0s @ sin 0d0 = 1 /2. Therefore,

Ng=Ly/2. (1.8)

/,>

1.5. Relation of the number of intersections
per area with the length of line per volume.

|
1]

Volume fraction of phases

Point counting is the easiest way of determining the volume fraction of two or more
phases in a microstructure. The volume fraction of a phase equals the fraction of
points in an array that lies on that phase. A line count is another way of finding
the volume fraction. If a series of lines are laid on a microstructure, the volume
fraction of a phase equals the fraction of the total line length that lies on that
phase.

Alloy composition from volume fraction of two or more phases

The composition of an alloy can be found from the volume fractions of phases.
The relative weight of component B in the  phase is (V)(p«)(Cx), Where ¥V is
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the volume fraction of &, p is the density of «, and Cy, is the composition (%B)
of the « phase. With similar expressions for the other phases, the relative weight
of component B, W3, is given by

W = (Va)(pe)(Ca) + (V)(0p)(Cp) + - - (1.9)

With similar expressions for the other components, the overall composition of the
alloy is

%B = 100Wp /(W4 + Wg + - ). (1.10)

Microstructural relationships

Microstructures consist of three-dimensional networks of cells or grains that fill
space. Each cell is a polyhedron with faces, edges, and corners. Their shapes
are strongly influenced by surface tension. However, before examining the nature
of three-dimensional microstructures, the characteristics of two-dimensional net-
works will be treated.

A two-dimensional network of cells consists of polygons, edges (sides), and
corners. The number of each is governed by the simple relation

P-E+C=1, (1.11)

where P is the number of polygons, E is the number of edges, and C is the number
of corners. Figure 1.6 illustrates this relationship. If the microstructure is such
that three and only three edges meet at each corner, £ = (3/2)C, so

P—-C/2=1 and P—E/3=1. (1.12)
P=1 P=4 P=4
E=5 E=12 E=17
C=5 C=9 C=14

1.6. Three networks of cells illustrating that P — E +C = 1.

For large numbers of cells, the one on the right-hand side of Equations (1.9)
and (1.10) becomes negligible, so £ = 3P and C = 2P. This restriction of three
edges meeting at a corner also requires that the average angle at which the edges
meet is 120° and that the average number of sides per polygon is six.



