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PREFACE

Electrochemistry at Electrodes is concerned with the structure of electrical
double layers and the characteristic of charge transfer reactions across the
electrode/electrolyte interface. The purpose of this text is to integrate modern
electrochemistry with semiconductor physics; this approach provides a quantitative
basis for understanding electrochemistry at metal and semiconductor electrodes.

Electrons and ions are the principal particles that play the main role in
electrochemistry. This text, hence, emphasizes the energy level concepts of electrons
and ions rather than the phenomenological thermodynamic and kinetic concepts
on which most of the classical electrochemistry texts are based. This rationalization
of the phenomenological concepts in terms of the physics of semiconductors should
enable readers to develop more atomistic and quantitative insights into processes
that occur at electrodes.

This book incorporates into many traditional disciplines of science and
engineering such as interfacial chemistry, biochemistry, enzyme chemistry,
membrane chemistry, metallurgy, modification of solid interfaces, and materials
corrosion.

This text is intended to serve as an introduction for the study of advanced
electrochemistry at electrodes and is aimed towards graduates and senior
undergraduates studying materials and interfacial chemistry or those beginning
research work in the field of electrochemistry.

Chapter 1 introduces a concept of energy levels of particles in physicochemical
ensembles. Electrons are Fermi particles whose energy levels are given by the
Fermi levels, while ions are Boltzmann particles whose energy is distributed in
an exponential Boltzmann function. In Chapter 2 the energy levels of electrons
in solid metals, solid semiconductors, and aqueous solutions are discussed.
Electrons in metals are in delocalized energy bands; electrons in semiconductors
are in delocalized energy bands as well as in localized levels; and redox electrons
associated with redox particles in aqueous solutions are in localized levels which
are split into occupied (reductant) and vacant (oxidant) electron levels due to the
Franck-Condon principle. Chapter 3 introduces the energy levels of ions in gas,
liquid, and solid phases. In aqueous solution, the acidic and basic proton levels in
water molecules interrelate with proton levels in solute particles such as acetic
acid.

In Chapter 4 the physical basis for the electrode potential is presented based
on the electron and ion levels in the electrodes, and discussion is made on the
electronic and ionic electrode potentials. Chapter 5 deals with the structure of
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the electrical double layer at the electrode/electrolyte interfaces. The potential of
zero charge of metal electrodes and the flat band potential of semiconductor
electrodes are shown to be characteristic of individual electrodes. The interface of
semiconductor electrodes is described as either in the state of band edge level
pinning or in the state of Fermi level pinning. Chapter 6 introduces electrochemical
cells for producing electric energy (chemical cells) and chemical substances
(electrolytic cells).

In Chapter 7 general kinetics of electrode reactions is presented with kinetic
parameters such as stoichiometric number, reaction order, and activation energy.
In most cases the affinity of reactions is distributed in multiple steps rather than
in a single particular rate step. Chapter 8 discusses the kinetics of electron
transfer reactions across the electrode interfaces. Electron transfer proceeds
through a quantum mechanical tunneling from an occupied electron level to a
vacant electron level. Complexation and adsorption of redox particles influence
the rate of electron transfer by shifting the electron level of redox particles.
Chapter 9 discusses the kinetics of ion transfer reactions which are based upon
activation processes of Boltzmann particles.

Chapter 10 deals with photoelectrode reactions at semiconductor electrodes in
which the concentration of minority carriers is increased by photoexcitation,
thereby enabling the transfer of electrons to occur that can not proceed in the
dark. The concept of quasi-Fermi level is introduced to account for photoenergy
gain in semiconductor electrodes. Chapter 11 discusses the coupled electrode
(mixed electrode) at which anodic and cathodic reactions occur at the same rate
on a single electrode; this concept is illustrated by corroding metal electrodes in
aqueous solutions.

I wish to thank the Japan Technical Information Service for approval to
reproduce diagrams from a book “Electrode Chemistry” which I authored. Special
acknowledgment is due to Professor Dr. Roger W. Staehle who has edited the
manuscript. I am also grateful to Dr. Takeji Takeuchi for his help in preparing
camera-ready manuscripts. Finally I am grateful to my wife, Yuko, for her constant
love and support throughout my career.

Norio Sato.

oy

Sapporo, Japan
April, 1998
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CHAPTER 1

THE ENERGY LEVEL OF PARTICLES

1.1 Particles and Particle Ensembles

Materials and substances are composed of particles such as molecules, atoms
and ions, which in turn consist of much smaller particles of electrons, positrons
and neutrons. In electrochemistry, we deal primarily with charged particles of
ions and electrons in addition to neutral particles. The sizes and masses of ions
are the same as those of atoms: for relatively light lithium ions the radius is 6 x
10! m and the mass is 1.1 x 10 ® kg. In contrast, electrons are much smaller
and much lighter than ions, being 1/1,000 to 1/10,000 times smaller (classical
electron radius =2.8 x 107!® m, electron mass=9.1 x 10 ' kg). Due to the extremely
small size and mass of electrons, the quantization of electrons is more pronounced
than that of ions. Note that the electric charge carried by an electron (e=—1.602
x 107*® C) is conventionally used to define the elemental unit of electric charge.

In general, a single particle has unitary properties of its own. In addition, a
large number of particles constitutes a statistical ensemble that obeys ensemble
properties based on the statistics that apply to the particles. According to quantum
statistical mechanics, particles with half an odd integer spin such as electron
and positron follow the Fermi statistics, and particles with an even integer spin
such as photon and phonon follow the Bose-Einstein statistics. For heavy particles
ofions and atoms, which also follow either the Fermi or the Bose-Einstein statistics,
both Fermi and Bose-Einstein statistics become indistinguishable from each other
and may be represented approximately by the Boltzmann statistics in the
temperature range of general interest.

Particles that obey Fermi statistics are called Fermi particles or fermions.
The probability density of Fermi particles in their energy levels is thus represented
by the Fermi function, f(¢), that gives the probability of fermion occupation in an
energy level, €, as shown in Eqn. 1-1:
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f(e) = 1 : (1-1)

€—¢€p
exp[ BT +1

where % is the Boltzmann constant, T is the absolute temperature, and e is the
thermodynamic potential of Fermi particle called the Fermi level or Fermi energy.
Fermi statistics permits only one energy eigenstate to be occupied by one particle.

Particles that obey Bose-Einstein statistics are called Bose particles or bosons.
The probability density of bosons in their energy levels is represented by the
Bose-Einstein function as shown in Eqn. 1-2:

= 1 "
f(e)= exp( Ek_TEB ]_1 ; (1-2)

where ¢ is the thermodynamic potential of Bose particles, called the Bose-Einstein
level or Bose-Einstein condensation level. In Bose-Einstein statistics one energy
eigenstate may be occupied by more than one particle.

Figure 1-1 shows the two probability density functions. In Fermi statistics,
the probability of particle occupation (Fermi function) becomes equal to unity at
energy levels slightly lower than the Fermi level (f(¢) = 1 at € <ef) and to zero at
energy levels slightly higher than the Fermi level (f(¢) = 0 at € > ¢¢), apparently
decreasing from one to zero in a narrow energy range around the Fermi level, €g,

(a) (b)

0 05 1.0 0
f(e) fle) —

Fig. 1-1. Probability density functions of particle energy distribution: (a) Fermi function,
(b) Bose-Einstein function. & = particle energy; f(¢) = probability density function; e =
Fermi level; e5 = Bose-Einstein condensation level.
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with increasing particle energy. On the other hand, in Bose-Einstein statistics
the particle occupation probability decreases nearly exponentially with increasing
particle energy above the Bose-Einstein level, €5. At high energy levels (€ >> €5,
€ >> ep), both Fermi and Bose statistics may be approximated by the classical
Boltzmann distribution function shown in Eqn. 1-3:

f(£)=Cexp( k—,; ) (1-3)

where C is a normalization constant, and the exponential factor of exp(—e/kT)
is called the Boltzmann factor. The Boltzmann function is valid for particle
ensembles of low density at relatively high temperature.

According to quantum statistics, a particle is in a state of degeneracy if the
particle ensemble follows either the Fermi or the Bose-Einstein statistics. We
may assume that a particle is in the state of degeneracy at low temperatures and
in the state of nondegeneracy at high temperatures. The transition temperature,
T., (degeneracy temperature) between the two states is proportional to the 2/3
power of particle density, n, and inversely proportional to the particle mass, m.
The degeneracy temperature for Fermi particles, that is called the Fermi
temperature, is given by T. = e/ k = (h?/8 m k) x (3 n/n)?*'®, where h is the Planck
constant. The transition temperature from degeneracy to nondegeneracy is
estimated to be about 10,000 K for free electrons in metals and about 1 K for ions
and atoms in condensed phases. Electrons in metal crystals, then, are degenerated
Fermi particles, while ions and atoms in condensed phases are nondegenerated
Boltzmann particles in the temperature range of general interest.

In quantum mechanics, the energy of particles is quantized into a series of
allowed energy levels, €, = n2h?/( 8 m a?); where a is the space size for a particle,
m is the particle mass, and n (n =1, 2, 3, -+) is the quantum number. The interval
of allowed energy levels is then given by Ae =¢,,,—¢,=(2n +1)h%/(8ma?),
indicating that the greater the particle mass and the greater the particle space
size, the smaller are the energy level intervals and, hence, the less are the
quantization effects. The transition from the quantized energy levels to the con-
tinuous energy levels corresponds to the degeneracy—nondegeneracy transition of
particle ensembles.

The particles we will deal with in this textbook are mainly electrons and ions
in condensed solid and liquid phases. In condensed phases ions are the classical
Boltzmann particles and electrons are the degenerated Fermi particles.
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1.2 Chemical Potential and Electrochemical Potential

According to classical thermodynamics, the energy of particles may be repre-
sented in terms of entropy, internal energy, enthalpy, free energy, and free
enthalpy, depending on the independent variables we choose to describe the
state of particle ensemble system. We use in this textbook the free enthalpy, G,
(also called the Gibbs free energy or Gibbs energy) with independent variables of
temperature, T, and pressure, p; and the free energy, F, (also called the Helmholtz
free energy) with independent variables of temperature, T, and volume, V.

The differential energy of a substance particle, i, in a particle ensemble is
called the chemical potential, n:, when the particle is electrically neutral (atoms
and molecules),

w2 (5 )=

and the differential energy is called the electrochemical potential, i, when the
particle is electrically charged (ions and electrons),

Sl & W

where x; is the molar fraction of particle i and ¢ is the inner potential (electrostatic
potential) of the particle ensemble. In Eqns. 1-4 and 1-5 we may use, instead of
the molar fraction, x;, the particle concentration, n;, in terms of the number of
particles in unit volume of the particle ensemble. For an ensemble comprising
only the same particles of pure substance, the chemical potential becomes equal
to the free enthalpy or free energy divided by the total number of particles in the
ensemble (p;=G/N;=F/N;), and so does the electrochemical potential
(m;=G/N;=F/N;) . The chemical potential may be defined not only for non-
charged neutral particles but it can also be defined for charged particles by
subtracting the electrostatic energy from the electrochemical potential of a charged
particle, as is shown in Eqn. 1-9.

For an ensemble comprising a mixture of different kinds of substance particles,
chemical thermodynamics introduces the absolute activity, M, to represent the
chemical potential, p;,of component i as shown in Eqn. 1-6:

oF
i 14
axi ]V.T.x ( )

oF
; 1-5
ox; ]V.T.x.o ( )

u;=kTlnk,; . (1-6)

Further, introducing a standard state (reference state) where the chemical poten-
tial of component i is p; and the absolute activity is A;, we obtain from Eqn. 1-6
the following equation:
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* ;\.j
u—u;, =kTln N

i

1-7

The ratio A;/A{ = a; is called the relative activity or simply the activity, which of
course depends on the standard state chosen. In general, the standard state of
substances is chosen either in the state of pure substance (x; = 1) based on the
Raoult’s law [ p; = (3G/dx),~. ] or in the state of infinite dilution (x; — 0) based
on the Henry’s law [ 1, = (6G/ 9x):—~0].

The ratio of the activity, a;, to the molar fraction, x;, or to the concentration,
n;, is the activity coefficient, y; = a;/x; or y; = a;/n;. Then, Eqn. 1-7 yields Eqn.
1-8:

wi=p;+kTlna;=p+-kTIny;+ 2 Tlnx, . (1-8)

The chemical potential, pu;, in the standard state defines the “unitary energy
level” of component i in a particle ensemble, and the term 2T In(y,x;) is the
communal energy, in which the term & T In x; is called the cratic energy representing
the energy of mixing due to the indistinguishability of identical particles in an
ensemble of particles [Gurney, 1953].

For charged particles an electrostatic energy of z;e ¢ has to be added to the
chemical potential, u;, to obtain the electrochemical potential, f;, as shown in
Eqn. 1-9:

gi=p+2ep=pn+kTlna, +2ze¢, (1-9)

where z; is the charge number of component i, e is the elemental charge, and ¢ is
the electrostatic inner potential of the ensemble.

1.3 Electrochemical Potential of Electrons

For high density electron ensembles such as free valence electrons in solid
metals where electrons are in the state of degeneracy, the distribution of electron
energy follows the Fermi function of Eqn. 1-1. According to quantum statistical
dynamics [Davidson, 1962], the electrochemical potential, R., of electrons is repre-
sented by the Fermi level, er, as shown in Eqn. 1-10:

o= (B e = (B ™o 420

where n, is the electron concentration in the electron ensemble.
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The “state density”, D(¢), of electrons is defined as the number of energy
eigenstates, each capable of containing one electron, for unit energy interval
(energy differential) for unit volume of the electron ensemble. According to the
electron theory of metals [Blakemore, 1985], the state density of free electrons in
metals is given by a parabolic function of electron energy ¢ as shown in Eqn.
1-11:

1 ( 2m. % 1
DE) =5k (20 ) (e-eo)t, (1-11)
where €, is the potential energy of electrons (the Hartree potential) in metals.
The concentration, n.(e), of electrons that occupy the eigenstates at an energy
level of € is given by the product of the state density and the probability density
of Fermi function as in Eqn. 1-12:

D(¢)
€E—Ep

. (1-12)
exp( T +1

ng(e) = D(e)f(e) =

Similarly, the concentration of eigenstates vacant of electrons is given by Eqn.
1-13:

D(e)
Ep— ¢

D(e)—ne)=D(e){1-f(e) } = .
exp[ T +1

(1-13)

It follows from Eqns. 1-12 and 1-13 that the state density is half occupied by
electrons with the remaining half vacant for electrons at the Fermi level, er, as
shown in Fig. 1-2. Since the Fermi temperature of electrons (7. = e¢/ &) in electron

D(e)f(e)
4 i
t - =— &r t
| )
° |
: Fig. 1-2. Energy distribution of
' electrons near the Fermi level, ¢r,
! in metal crystals: € = electron
" energy; f(e) = distribution function
(probability density); D(¢) =electron
1. = .

0 05 0 Di®) state density; D(e)f(e) = occupied

f(e) electron state density.



