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PREFACE

This book is intended to serve as a text for a two-semester undergraduate course
in topology and modern geometry. It is devoted almost entirely to the geometry
of the last two centuries. In fact, some of the subject matter was discovered only
within the last two decades. Much of the material presented here has traditionally
been part of the realm of graduate mathematics, and its presentation in undergraduate
courses necessitates the adoption of certain informalities that would be unacceptable
at the more advanced levels. Still, all of these informalities either were used by the
mathematicians who created these disciplines or else would have been accepted by
them without any qualms.

The first four chapters aim to serve as an introduction to topology. Chapter 1
provides an informal explanation of the notion of homeomorphism. This naive intro-
duction is in fact sufficient for all the subsequent chapters. However, the instructor
who prefers a more rigorous treatment of basic topological concepts such as homeo-
morphisms, topologies, and metric spaces will find it in Chapter 10.

The second chapter emphasizes the topological aspects of graph theory, but is not
limited to them. This material was selected for inclusion because the accessible na-
ture of some of its results makes it the pedagogically perfect vehicle for the transition
from the metric Euclidean geometry the students encountered in high school to the
combinatorial thinking that underlies the topological results of the subsequent chap-
ters. The focal issue here is planarity: Euler’s Theorem, coloring theorems, and the
Kuratowski Theorem.
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xii PREFACE

Chapter 3 presents the standard classifications of surfaces of both the closed and
bordered varieties. The Euler—Poincaré equation is also proved.

Chapter 4 is concerned with the interplay between graphs and surfaces—in other
words, graph embeddings. In particular, a procedure is given for settling the question
of whether a given graph can be embedded on a given surface. Polygonal (2-cell)
embeddings and their rotation systems are discussed. The notion of covering surfaces
is introduced via the construction of voltage graphs.

The theory of knots and links has recently received tremendous boosts from the
work of John Conway, Vaughan Jones, and others. Much of this work is easily
accessible, and some has been included in Chapter 5: the Conway—Gordon—Sachs
Theorem regarding the intrinsic linkedness of the graph K¢ in R? and the invariance
of the Jones polynomial. While this discipline is not, properly speaking, topological,
connections to the topology of surfaces are not lacking. Knot theory is used to prove
the nonembeddability of nonorientable surfaces in R3, and surface theory is used to
prove the nondecomposability of trivial knots. The more traditional topic of labelings
is also presented.

The next three chapters deal with various aspects of differential geometry. The
exposition is as elementary as the author could make it and still meet his goals:
explanations of Gauss’s Total Curvature Theorem and hyperbolic geometry. The ge-
ometry of surfaces in R? is presented in Chapter 6. The development follows that
of Gauss’s General Investigations of Curved Surfaces. The subtopics include Gaus-
sian curvature, geodesics, sectional curvatures, the first fundamental form, intrinsic
geometry, and the Total Curvature Theorem, which is Gauss’s version of the famed
Gauss—Bonnet formula. Some of the technical lemmas are not proved but are instead
supported by informal arguments that come from Gauss’s monograph. A consider-
able amount of attention is given to polyhedral surfaces for the pedagogical purpose
of motivating the key theorems of differential geometry.

The elements of Riemannian geometry are presented in Chapter 7: Riemann met-
rics, geodesics, isometries, and curvature. The numerous examples are also meant to
serve as a lead-in to the next chapter.

The eighth chapter deals with hyperbolic geometry. Neutral geometry is defined
in terms of Euclid’s axiomatization of geometry and is described in terms of Euclid’s
first 28 propositions. Various equivalent forms of the parallel postulates are proven,
as well as the standard results regarding the sum of the angles of a neutral triangle.
Hyperbolic geometry is also defined axiomatically. Poincaré’s half-plane geometry
is developed in some detail as an instance of the Riemann geometries of the previous
chapter and is demonstrated to be hyperbolic. The isometries of the half-plane are
described both algebraically and geometrically.

The ninth chapter is meant to serve as an introduction to algebraic topology. The
requisite group theory is summarized in Appendix B. The focus is on the derivation
of fundamental groups, and the development is based on Poincaré’s own exposition
and makes use of several of his examples. The reader is taught to derive presentations
for the fundamental groups of the punctured plane, closed surfaces, 3-manifolds,
and knot complements. The chapter concludes with a discussion of the Poincaré
Conjecture.
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The tenth chapter serves a dual purpose. On the one hand it aims to acquaint the
reader with the elegant topic of general topology and the joys of sequence chasing.
On the other hand, it contains the rigorous definitions of a variety of fundamental
concepts that were only informally defined in the previous chapters. In terms of
mathematical maturity, this is probably the most demanding part of the book.

The last chapter is devoted to the study of polytopes. Following an introduction,
attention is given to the graphs of polytopes, regular polytopes, and the enumeration
of faces of polytopes.

Wherever appropriate, historical notes have been interspersed with the exposi-
tion. Care was taken to supply many exercises that range from the routine to the
challenging. Middle-level exercises were hard to come by, and the author welcomes
all suggestions.

An Instructor’s solution manual is available upon request from Wiley.

SAUL STAHL

Lawrence, Kansas
Stahlex@ku.edu
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CHAPTER 1

INFORMAL TOPOLOGY

In this chapter the notion of a topological space is introduced, and informal ad hoc
methods for identifying equivalent topological spaces and distinguishing between
nonequivalent ones are provided.

The last book of Euclid’s opus Elements is devoted to the construction of the five
Platonic solids pictured in Figure 1.1. A fact that Euclid did not mention is that the
counts of the vertices, edges, and faces of these solids satisfy a simple and elegant
relation. If these counts are denote by v, e, and f, respectively, then

pv—é4 =2, (1)
Specifically, for these solids we have:

Cube: 8—124+6=2.
Octahedron: 6—1248=2.
Tetrahedron: 4—-6+4=2.

Dodecahedron: 20—30-12=2.
Icosahedron: 12 —-304-20=2.

Introduction to Topology and Geometry, Second Edition. 1
By Saul Stahl and Catherine Stenson Copyright (©) 2013 John Wiley & Sons, Inc.



2 INFORMAL TOPOLOGY

Cube Tetrahedron

Octahedron

Dodecahedron Icosahedron

Figure 1.1  The Platonic solids.

A Platonic solid is defined by the specifications that each of its faces is the same
regular polygon and that the same number of faces meet at each vertex. An inter-
esting feature of Equation (1) is that while the Platonic solids depend on the notions
of length and straightness for their definition, these two aspects are absent from the
equation itself. For example, if each of the edges of the cube is either shrunk or
extended by some factor, whose value may vary from edge to edge, a lopsided cube
is obtained (Fig. 1.2) for which the equation still holds by virtue of the fact that it
holds for the (perfect) cube. This is also clearly true for any similar modification
of the other four Platonic solids. The fact of the matter is that Equation (1) holds
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Figure 1.2 A lopsided cube.

not only for distorted Platonic solids, but for all solids as well, provided these solids
are carefully defined. Thus, for the three solids of Figure 1.3 we have respectively
5-8+5=2,6-9+5=2,and 7— 12+ 7 = 2. The applicability of Equation (1)
to all such solids was first noted by Leonhard Euler (1707-1783) in 1758, although
some historians contend that this equation was presaged by certain observations of
René Descartes (1596-1650).

Euler’s equation remains valid even after the solids are subjected to a wider class
of distortions which result in the curving of their edges and faces (see Figure 1.4).
One need simply relax the definition of edges and faces so as to allow for any non-
self intersecting curves and surfaces. Soccer balls and volleyballs, together with the
patterns formed by their seams, are examples of such curved solids to which Euler’s
equation applies. Moreover, it is clear that the equation still holds after the balls are
deflated.

Topology is the study of those properties of geometrical figures that remain valid
even after the figures are subjected to distortions. This is commonly expressed by
saying that topology is rubber-sheet geometry. Accordingly, our necessarily infor-
mal definition of a topological space identifies it as any subset of space from which
the notions of straightness and length have been abstracted; only the aspect of conti-
guity remains. Points, arcs, loops, triangles, solids (both straight and curved), and the
surfaces of the latter are all examples of topological spaces. They are, of course, also
geometrical objects, but topology is only concerned with those aspects of their ge-

Figure 1.3  Three solids.



4 INFORMAL TOPOLOGY

U

Figure 1.4 A curved cube.

ometry that remain valid despite any translations, elongations, inflations, distortions,
or twists.

Another topological problem investigated by Euler, somewhat earlier, in 1736, is
known as the bridges of Koenigsberg. At that time this Prussian city straddled the two
banks of a river and also included two islands, all of which were connected by seven
bridges in the pattern indicated in Figure 1.5. On Sunday afternoons the citizens of
Koenigsberg entertained themselves by strolling around all of the city’s parts, and
eventually the question arose as to whether an excursion could be planned which
would cross each of the seven bridges exactly once. This is clearly a geometrical
problem in that its terms are defined visually, and yet the exact distances traversed
in such excursions are immaterial (so long as they are not excessive, of course). Nor
are the precise contours of the banks and the islands of any consequence. Hence,
this is a topological problem. Theorem 2.2.2 will provide us with a tool for easily
resolving this and similar questions.

The notorious Four-Color Problem, which asks whether it is possible to color
the countries of every geographical map with four colors so that adjacent countries
sharing a border of nonzero length receive distinct colors, is also of a topological
nature. Maps are clearly visual objects, and yet the specific shapes and sizes of
the countries in such a map are completely irrelevant. Only the adjacency patterns
matter.

Every mathematical discipline deals with objects or structures, and most will pro-
vide a criterion for determining when two of these are identical, or equivalent. The
equality of real numbers can be recognized from their decimal expansions, and two
vectors are equal when they have the same direction and magnitude. Topological
equivalence is called homeomorphism. The surface of a sphere is homeomorphic to

o
AN,

Figure 1.5 The city of Koenigsberg.
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Figure 1.6 Homeomorphic open arcs.

those of a cube, a hockey puck, a plate, a bowl, and a drinking glass. The reason
for this is that each of these objects can be deformed into any of the others. Sim-
ilarly, the surface of a doughnut is homeomorphic to those of an inner tube, a tire,
and a coffee mug. On the other hand, the surfaces of the sphere and the doughnut
are not homeomorphic. Our intuition rejects the possibility of deforming the sphere
into a doughnut shape without either tearing a hole in it or else stretching it out and
juxtaposing and pasting its two ends together. Tearing, however, destroys some con-
tiguities, whereas juxtaposition introduces new contiguities where there were none
before, and so neither of these transformations is topologically admissible. This in-
tuition of the topological difference between the sphere and the doughnut will be
confrmed by a more formal argument in Chapter 3.

The easiest way to establish the homeomorphism of two spaces is to describe a
deformation of one onto the other that involves no tearing or juxtapositions. Such
a deformation is called an isotopy. Whenever isotopies are used in the sequel, their
existence will be clear and will require no formal justification. Such is the case,
for instance, for the isotopies that establish the homeomorphisms of all the open
arcs in Figure 1.6, all the loops in Figure 1.7, and all the ankh-like configurations
of Figure 1.8. Note that whereas the page on which all these curves are drawn is
two-dimensional, the context is definitely three-dimensional. In other words, all our
curves (and surfaces) reside in Euclidean 3-space R?, and the isotopies may make
use of all three dimensions.

The concept of isotopy is insufficient to describe all homeomorphisms. There are
spaces which are homeomorphic but not isotopic. Such is the case for the two loops
in Figure 1.9. It is clear that loop b is isotopic to all the loops of Figure 1.7 above,
and it is plausible that loop a is not, a claim that will be justified in Chapter 5. Hence,

o Oy #| ©

Figure 1.7 Homeomorphic loops.



