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Chapter 1

Power Tools of the Trade

§1.1 Vectors and Plotting

§1.2 More Vectors, More Plotting, and NQW Matrices
§1.3 Building Exploratory En;fironments

§1.4 Error

§1.5 Designing Functions

§1.6 Structﬁre Arrays and Cell Arrays

§1.7 More Refined Graphics

MATLAB is a matrix-vector-oriented system that supports a wide range of activity that is
crucial to the computational scientist. In this chapter we get acquainted with this system through
a collection of examples that sets the stage for the proper study of numerical computation. The
MATLAB environment is very easy to use and you might start.right now by running the overview
files intro and demo. There is an excellent tutorial in The Student Edition of MATLAB. Our
introduction is similar in spirit but also previews the central themes that occur with regularity
in the following chapters. 4

We start with the exercise of plotting. MATLAB has an extensive array of visualization tools.
But even the simplest plot requires setting up a vector of function values, and so very quickly we
are led to the many vector-level operations that MATLAB supports. Our mission is to build up
a linear algebra sense to the extent that vector-level thinking becomes as natural as scalar-level
thinking. MATLAB encourages this in many ways, and plottmg is the perfect start-up topic. The
treatment is spread over two sections.

Building environments that can be used to explore mathematical and algorithmic ideas is the
theme of §1.3. A pair of random simulations is used to illustrate how MATLAB can be used in
this capacity.

In §1.4 we learn how to think and reason about error. Error is a fact of life in computational
science, and our examples are designed to build an appreciation for two very important types
of error. Mathematical errors result when we take wha.t is infinite or continuous and make it
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finite or discrete. Rounding errors arise because floating-point representation and arithmetic is

inexact,
81.5 is devoted to the art of designing effective functions. The user-defined function is a

fundamental building block in scientific computation. More complicated data structures are
discussed in §1.6, while in the last section we point to various techniques that can be used to

enrich the display of visual data.

1.1 Vectors and Plotting

Suppose we want to plot the funetion f(z) = sin(2rz) across the interval {0,1]. In MATLAB there
are three components to this task. ' '

e A vector of x-values that range across the interval must be set up:
O0=z1<z9<--<zZp=1

e The function must be evaluated at each z-value:
yx = f(zr), 4k=1,...,n.

e A polygonal line that connects the points (z1,31), ..., (Zn, yn) must be displayed.

If we take 21 equally spaced z-values, then the result looks like the plot shown in Figure 1.1. The
plot is “crude” because the polygonal effect is noticeable in regions where the function is changing
rapidly. But otherwise the graph looks quite good. Our introduction to MATLAB begins with the
details of the plotting process and the vector computations that go along with it. The sin(2rz)
example is used throughout because it is simple and structured. Exploiting that structure leads
naturally to some vector operations that are well supported in the MATLAB environment.

1.1.1 Setting Up Vectors

When you invoke the MATLAB system, you enter the command window and are prompted to
enter commands with the symbol “>>”. For example,

>> x = [10.1 20.2 30.3]
MATLAB is an interactive environment and it responds with
x=
10.1000 20.2000 - 30.3000

>>

This establishes x as a length-3 row vector. Square brackets delineate the vector and spaces
separate the components. On the other hand, the exchange
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The Function y = sin(2*pi*x)
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FIGURE 1.1 A crude plot of sin(27z)

> x = [ 10.1; 20.2; 30.3]
X =

10.1000

20.2000

30.3000

establishes x as a length-3 column vector. Again, square brackets define the vector being set up.
But this time semicolons separate the component entries and a column vector is produced.

In general, MATLAR displays the consequence of a command unless it is terminated with a
semicolon. Thus,

> x=1[ 10.1; 20.2; 30.3];

sets up the same column 3-vector as in the previous example, but there is no echo that displays
the result. However, the dialog

x = [10.1; 20.2; 30.3];
X

10.1000
20.2000
30.3000
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shows that the contents of a vector can be displayed merely by entering the name of the vector.
Even if one component in a vector is changed with no terminating semicolon, MATLAB displays

the whole vector:

x = [10.1; 20.2; 30.3];

x(2) =

X =
10.1000
21.0000
30.3000

It is clear that when dealing with large vectors, a single forgotten semicolon can result in a deluge

of displayed output.
To change the orientation of a vector from row to column or column to row, use an apostrophe.

Thus,
x = [10.1 20.2 30.3]°

establishes x as a length-3 column vector. Placing an apostrophe after a vector effectively takes

its transpose.
The plot shown in Figure 1.1 involves the equal spacmg of n = 21 z-values across [0,1]; that

is
x=[0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 ..:
.55 .60 .65 .70 .75 .80 .85 .90 .95 1.0 ]

The ellipsis symbol “...” permits the entry of commands that occupy more than one line.
It is clear that for even modest values of n, we need other mechanisms for setting up vectors.

Naturally enough, a for-loop can be used:

n = 21;
h =1/(n-1);
for k=1:n
x(k) = (k-1)x*h;
end

This is a MATLAB script. It assigns the same length-21 vector to x as before and 11: brings up an
important point.

In MATLAB, variables are not declared by the user but are created on a
need-to-use basis by a memory manager. Moreover, from MATLAB's point
of view, every simple variable is a compler matriz indezed from unity.

Scalars are 1-by-1 matrices. Vectors are “skinny” matrices with either one row or one column.
We have much more to say about “genuine” matrices later. Our initial focus is en rea:l vectors
and scalars.
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In the preceding script, n, h, k, and x are variables. It is instructive to trace how x “turns
into” a vector during the execution of the for-loop. After one pass through the loop, x is a
length-1 vector (i.e., a scalar). During the second pass, the reference x(2) prompts the memory
manager to make x a 2-vector. During the third pass, the reference x(3) prompts the memory
manager to make x a 3-vector. And so it goes until by the end of the loop, x has length 21. It is
a convention in MATLAB that this kind of vector construction yields row vectors.

The MATLAB zeros function is handy for setting up the shape and size of a vector prior to

a loop that assigns it values. Thus,

n = 21;
h=1/(n-1);
x = zeros(1,n);
for k=1:m;\\

x(k) = (k-1)*h;
end

computes x as row vector of length 21 and initializes the values to zero. It then proceeds to
assign the appropriate value to each of the 21 components. Replacing x = zeros(1,n) with
the command x = zeros(n,1) sets up a length 21 column vector. This style of vector set-up
is recommended for two reasons. First, it forces you to think explicitly about the orientation
and length of the vectors that you are working with. This reduces the chance for “dimension
mismatch” errors when vectors are combined. Second, it is more efficient because the memory
manager does not have to “work” so hard with each pass through the loop.

MATLAB supplies a length function that can be used to probe the length of any vector. To
illustrate its use, the script

[10 20 30];
length(u);

= [10;20;30;40];
length(v);

= [50 60];
length(u);

c B4 b g

P
assigns the values of 3, 4, and 2 to n, m, and p, respectively.

This brings up another important feature of MATLAB. It supports a very extensive help
facility. For example, if we enter

help length
then MATLAB responds with

LENGTH Number of components of a vector.
LENGTH(X) returns the length of vector X. It is equivalent
to MAX(SIZE(X)).

So extensive and well structured is the help facility that it obviates the need for us to go into
excessive detail when discussing many of MATLAB’s capabilities. Get in the habit of playing
around with each new MATLAB feature that you learn, exploring the details via the help facility.
Start right now by trying



