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PART I

THE ORIGINS AND DEVELOPMENT OF
GEOMETRICAL KNOWLEDGE

‘That all our knowledge begins with experience, there
is indeed no doubt . . . but although all our knowledge
originates with experience, it does not all arise out of
experience.’

KANT: Critique of Pure Reason

CHAPTER I
THE CONCEPT OF GEOMETRY

OUuRr main purpose in this book is to construct and develop a
systematic theory of projective geometry, and in order to make the
system both rigorous and easily comprehensible we have chosen
to build it on a purely algebraic foundation. In adopting such a
course, however, we may run the risk of appearing to reduce our
subject to an ingenious manipulation of symbols in accordance
with certain arbitrarily prescribed rules. Although the axiomatic
form is the proper one in which to present a mathematical theory,
we must not lose sight of the fact that an abstract system can only
be fully appreciated when seen in relation to a more concrete back-
ground; and this is the reason why we have prefaced the formal
development of projective geometry with two introductory chap-
ters of a more informal character. The present chapter is devoted
to a rather general consideration of the nature of mathematics and,
more specifically, of geometry, while Chapter II contains an outline
of the intuitive treatment of projective geometry from which the
axiomatic theory has gradually been disentangled by progressive
abstraction.

The growth of geometrical knowledge in the past has been
marked by a gradual shifting away from empirical observation
towards rational deduction; and we shall begin by looking for a
moment at this process.

Geometry is commonly regarded as having had its origins in
ancient Egypt and Babylonia, where much empirical knowledge
was acquired through the experience of surveyors, architects, and
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builders; but it was in the Greek world that this knowledge took
on-the characteristic form with which we are now familiar. The
Greek geometers were not only interested in the facts as such, but
were intensely interested in exploring the logical connexions
between them. In other words, they wished to raise the status
of mathematics from that of a mere catalogue to that of a deductive
science—and the Elements of Euclid is an embodiment of this
ideal. In the Elements we have the systematic derivation of a large
body of geometrical theorems by strict deduction from a small
number of axioms. The system, as is now known, is not altogether
perfect, and modern mathematicians have shown how it needs to
be amended; but the modifications required are comparatively
slight, and there is perhaps no easier way for a student to learn to
appreciate mature mathematical reasoning than by studying the
first book of Euclid and observing the way in which it is constructed.

Now for the Greeks, we must remember, geometry meant study
of the space of ordinary experience, and the truth of the axioms of
geometry was guaranteed by appeal to self-evidence. This view
persisted for a very long time, and was still accepted without
question at the end of the eighteenth century—when Kant, for
example, made it an integral part of his philosophy. But about
that time mathematicians were already beginning to see their
subject in a new light, as a branch of study not directly dependent
on experience, and this change of outlook was encouraged by the
discovery, early in the nineteenth century, of the non-euclidean
geometries, systems consistent within themselves but incompatible
with Euclid’s system. Since then it has become a commonplace
that the mathematician is free to study the consequences of any
axioms that interest him, whether or not they have any applica-
tion in experience, provided only that they are not mutually
contradictory.

We see, then, that in the period which elapsed between the first
beginnings of mathematics and the conscious adoption of the
modern axiomatic method, two major revolutions took place in
mathematical thinking. First, the mere collecting of useful -or
interesting facts gave place to the rational deduction of theorems;
and then, much later, mathematicians began to detach themselves
from experience and to concentrate on the study of formal axio-
matic systems. Neither of the revolutions came about suddenly,
and the second is in a sense still in progress.
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Mathematics, as conceived today, is fundamentally the study
of structure. Thus, although arithmetic is ostensibly about num-
bers and geometry about points and lines, the real objects of study
in these branches of mathematics are the relations which exist be-
tween numbers and between geometrical entities. As mathematics
develops, so it becomes more abstract, until at last it is seen to be
concerned with networks of formal relations only, and not with any
particular sets of entities between which the relations hold. The
process of abstraction whereby the formal structure is by degrees
detached from the concrete systems in which it is exhibited is of
so great importance to the understanding of the nature of mathe-
matics as to justify closer examination of the manner in which it
takes place.

One of the simplest illustrations of the process is provided by
the evolution of the concept of number. Our first rudimentary
idea of number is arrived at by simple abstraction from the pro-
cesses of counting and measuring ordinary objects, and this idea
is adequate at the level of school arithmetic. At a more advanced
stage, numbers are seen to require redefinition in purely logical
terms, and several alternative definitions have, in fact, been given.
In whatever way numbers are defined, however, they obey the
same formal ‘laws of algebra’—the associative law of addition
(a+b)+4c¢ = a+(b+c), the distributive law a(b+4-c) = ab+-ac, ete.
—and many of the standard theorems of arithmetic and algebra
can be deduced directly from these laws, without any need to
specify further the nature of the numbers that are represented by
thesymbolsa, b, etc. But thisisnot all. When studying elementary
algebra one soon becomes aware of the close analogy that exists
between the algebra of polynomials and the arithmetic of whole
numbers; and it is now easy to account for this analogy by pointing
out that polynomials, as well as numbers, satisfy the ‘laws of
algebra’. This is tantamount to saying that the system of numbers
and the system of polynomials have a common structure; and when
once this fact is recognized it is a natural step to undertake the
study of an abstract system whose nature is unspecified beyond
the fact that it has this particular structure. Such a system is
known in algebra as a ring. If, on the other hand, we apply a similar
process of abstraction to the system of rational numbers or the
system of rational functions, we arrive at the abstract system
known as a field. :
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There is no need for recognition of structural similarity to come
to an end, even at this stage. Thus we might observe, for instance,
that addition of rational numbers and multiplication of non-zero
rational numbers obey similar laws; and we could then verify that
the additive structure of a field and its multiplicative structure
(when the element zero is excluded) are formally alike. Carrying
the process of abstraction one stage farther, we could now intro-
duce the abstract system known as a group.

Mathematics, then, is concerned with abstract systems of various
kinds, each defined by a suitable set of axioms, which serves to
characterize its structure. But although, from the point of view
of pure mathematics, each structure is regarded as self-contained,
the mathematical scheme usually has one or more concrete realiza-
tions; that is to say, the structure is usually to be found (possibly
only to a certain degree of approximation) in a more concrete
system. Abstract euclidean geometry of three dimensions, for
instance, has as one of its realizations the structure of ordinary
space. Indeed this is what led to its discovery, as well as what
makes it 50 much more interesting than other systems which are
logically of equal status with it. We do not, of course, always have
to go all the way back to everyday experience for a realization
of a mathematical formalism, since one is usually provided, as in
the arithmetical example already considered, by a more concrete
part of mathematics itself. One of the most important instances
is the widespread occurrence of the group structure, which is found
not only in additive and multiplicative groups of numbers, but
also in groups of transformations and groups of matrices. Since
this type of structure pervades much of mathematics, we may say
that it is especially significant.

In this book we shall study the structure of projective geometry
which, as is well known, is closely associated with certain simple
algebraic structures, and with linear algebra particularly. Since
the relevant algebra is part of every mathematician’s essential
equipment, we shall take it for granted that the reader is already
familiar with it.

What we have said so far about the nature of mathematics holds
quite generally, but when we limit the discussion to geometry we
are able to be rather more specific. The structures studied in this
branch of mathematics occurin experience as spatial structures,and
from this alone we can infer something of their general character.

N
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If, in fact, we turn back once again to Greek geometry, we may
recall that the geometrical knowledge with which the Greeks began
was derived ultimately from measurements made upon rigid bodies,
and was therefore essentially a knowledge of shapes. Now the
shape of a body can be conceived as determined by those relations
between its parts which remain unaltered when the body is moved
about in space. Whenever one body can be made in this way to
take the place of another, the two bodies have the same shape;
and they are then equivalent as regards their geometrical properties,
or, in the language of elementary geometry, ‘equal in all respects’.
It will be remembered that in order to prove that certain sets of
conditions are sufficient to ensure the congruence of two triangles
Euclid showed that, if the conditions are satisfied, one triangle may
be placed so as to bring it into coincidence with the other.

The idea of studying those properties of bodies which remain
unaltered when the bodies are displaced in any way is most sug-
gestive to a modern mathematician. In the language now in use,
we would say that the geometrical (or, more accurately, the
euclidean) properties of a body are invariant with respect to the
operation of displacement in space; and invariance with respect to
a certain kind of operation at once suggests the existence of an
underlying group of operations. In the present instance the
appropriate group is not far to seek. The totality of all displace-
ments in space is a group of transformations; two bodies are
congruent if and only if one can be made to take the place of the
other by an operation of the group; and the shape of a body is
determined by those of its spatial characteristics which are in-
variant with respect to the whole group. This, then, is the nature
of euclidean geometry—it is the invariant-theory of the group of
displacements.

Euclidean geometry, however, is not the whole of geometry.
Early in the nineteenth century it was realized that other ésbe—
matic collections of geometrical properties are possible besides
that of Euclid, and in 1822 Poncelet published his T'raité des pro-
priétés projectives des figures, the first systematic treatise on
projective geometry. In constructing this system Poncelet was
fully conscious that his classification of geometrical theorems was
based upon a new kind of fundamental operation, namely conical
projection. A projective property of a figure is, in fact, simply a
property that is invariant with respect to projection, and this
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enables us easily to identify the associated group of transforma-
tions. Confining ourselves, for simplicity, to two-dimensional
geometry, we may consider the totality of all those transformations
of the plane into itself which can be resolved into finite chains of
projections from one plane on to another; and it is clear that this
totality of transformations is a group and that it has plane pro-
jective geometry as its invariant-theory. Since the euclidean
group, consisting of all displacements of the plane, may be shown
to be a proper subgroup of the projective group, it follows at once
that every projectively invariant property is also a euclidean in-
variant, whereas not every euclidean property is projective.

If we were now to take any arbitrarily chosen group of transforma-
tions of the plane into itself (containing the group of displacements
as a subgroup) we could use this group in order to define an associ-
ated system of geometry; and all such systems are, mathematically
speaking, of equal status. This was the general principle laid down
by Klein in his famous Erlangen Programme of 1872.1 Some of the
geometries that can be obtained in this way, such as euclidean
geometry, affine geometry, and projective geometry, are very
well known; others, such as inversive geometry (which arises from
the group of all transformations that can be resolved into finite
sequences of inversions with respect to circles) are known but not
usually studied in much detail; and yet others are presumably
ignored altogether.

We shall confine our attention to the three geometries first
mentioned—the geometries of the projective hierarchy—and since
this restriction is somewhat arbitrary from a purely mathematical
point of view, we should perhaps give some indication of why we
choose to impose it. In the first place, euclidean geometry is of
particular interest on account of its close connexion with the space
of common experience, and this alone is sufficient to single it out
for special attention. It so happens, however, that euclidean
geometry is complicated; and we can appreciate it better when
we relate it to projective geometry, where the structure is very
much simpler. Projective geometry is more symmetrical than
euclidean, by virtue both of the existence of a principle of duality
and also of the fact that it may be handled by means of homo-
geneous coordinates. When homogeneous coordinates are used

t Klein: Vergleichende Betrgchtungen tber neuere geometrische Forschungen
(Erlangen, 1872). Reprinted in Mathematische Annalen, 43 (1893).
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for this purpose, the algebra has the merit of being either already
linear or else readily made so. Thus the system of projective
geometry is easy to work out and equally easy to comprehend when
it has been worked out. Furthermore, projective transformations
have the property of transforming conics into conics; and this
means that the conic takes its place as naturally in projective
geometry as does the circle in euclidean geometry. Finally, the
essentials of euclidean geometry may be treated projectively by
the simple artifice of introducing the line at infinity and the
circular points. We thus have two geometries, projective geometry
and euclidean geometry, which fit naturally together and which
between them include most of the classical geometrical theorems.
It is convenient to take in conjunction with them affine geometry,
an intermediate geometry that is more general than euclidean but
less so than projective; and the projective hierarchy is then
complete.

What has been said so far concerns the subject-matter of our
book, and it still remains for us to say something of the kind of
approach that we shall use. It is customary to distinguish between
two modes of reasoning in geometry, commonly referred to as
synthetic and analytical. In a synthetic treatment we argue directly
about geometrical entities (points, lines, etc.) and geometrical
relations between them, whereas in an analytical treatment we
first represent the geometrical entities by coordinates or equations,
in order to be able to use the technique of algebraic manipulation.
Since the discussion of projective geometry which follows in Part IT
is to be analytical, we shall conclude this chapter by touching upon
the use of coordinates; but it should be realized, nevertheless, that
we are under no logical compulsion to introduce a coordinate
system at all. In the Elements, as in all Greek treatises, euclidean
geometry is treated synthetically, and synthetic treatments of
projective geometry are to be found in a number of modern books
on the subject.}

Coordinates were first introduced into geometry by Descartes,
in the seventeenth century, and the fruitfulness of the innovation
soon became apparent. The older method of labelling figures was
by letters of the alphabet, as in ‘the triangle 4 BC’, but such labels

t The first work of this kind was von Staudt’s Geometrie der Lage (Nuremberg,
1847). A standard text-book, written in a similar spirit, is Veblen and Young's
Projective Geometry (Boston, 1910).
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were in fact no more than arbitrarily assigned names. Descartes’s
new technique of coordinates, on the other hand, made use of a
system of labels which itself possesses a mathematical structure
capable of reflecting the structure of the system labelled. This
method of labelling has since become indispensable in mathematics,
and the domain in which it can be applied now extends far beyond
that originally envisaged by Descartes. In geometry itself, not
only points but also lines and other entities can be represented
by sets of coordinates; and in dynamics—to take an instance of
another kind—the configuration of a system is ordinarily specified
by n coordinates ¢,,q,,...,¢,.

We have now seen how mathematics may be looked upon as a
study of formal structure, and how geometry may be fitted into
the general scheme. What has been said so far has been of a rather
general character, and we must now turn more specifically to the
details of the geometries of the projective hierarchy. This will
be the topic of the second chapter of Part I, in which our purpose
will be to recall enough of the elementary treatment of projective
geometry to enable the reader to appreciate the process of abstrac-
tion which leads to the formal system of Part II.



CHAPTER II
THE ANALYTICAL TREATMENT OF GEOMETRY

THis chapter is devoted, for the most part, to a discussion of the
basic ideas involved in projective geometry and the apparatus of
coordinates which allows them to be handled algebraically, and
the point of view adopted is essentially elementary. The whole
accountis to be regarded asintroductory,and inPart I1 a completely
fresh beginning will be made. The formal system to be presented
there is wholly abstract and independent of all previous geometrical
knowledge; but even so,-an elementary treatment such as that
given in the present chapter is necessary as a psychological though
not a logical presupposition of the more advanced theory. It alone
can give body to the abstract formalism.

This chapter is not meant to be more than a summary, and the
reader who desires a fuller account of the subjects touched upon in
it is referred to Graustein: Infroduction to Higher Geometry (New
York, 1930).

§1. THE PROJECTIVE HIERARCHY

We have already referred in Chapter I to the three geometries
of the projective hierarchy and the possibility of defining them in
terms of certain groups of transformations. It will be convenient,
before proceeding further, to make these ideas more precise by
giving a few details of each of the geometries; and once again we
shall confine ourselves to the geometry of the (real) plane.

Euclidean geometry

The underlying group (p. 5) is the group of all displacements
in the plane. The simplest invariant of this group is length, or the
distance between two points. A4mngle is another invariant, and it
follows from a theorem on congruent triangles (Euclid, I. 4) that
angles may be characterized by suitably chosen lengths.

Among the figures appropriately studied in euclidean geometry
is the circle, or locus of a variable point whose distance from a
fixed point is constant. The theorems which properly belong to
euclidean geometry include most of those in the Elements.

Analytically, euclidean geometry is best handled by means of
rectangular cartesian coordinates, since, by virtue of the theorem
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of Pythagoras, the expression for the distance between two points
then has a particularly simple form. Euclidean geometry may also
be handled by vectors, the length of a vector being expressed in
terms of the scalar product.

Projective geometry

The underlying group consists of all finite chains of projections
that begin and end on the given plane. Relations of incidence,
collinearity, and tangency are all projectively invariant, and cross
ratio (cf. p. 17) is an invariant quantity.

A figure that is appropriately studied in projective geometry
is the conic, since every conic is obtainable by projection from
a circle.

Analytically, projective geometry is best handled by means of
projective coordinates, which will be defined in § 5. These coordi-
nates are expressible in terms of cross ratios. Vectors, as ordinarily
defined in elementary books, have no application in projective

geometry proper.

Affine geometry

Affine geometry occupies an intermediate position between
euclidean geometry and projective geometry. The underlying
group is generated by all parallel projections in space. The simplest
invariant quantity for this group is the position ratio AP/PB of
a point P with respect to two points 4, B with which it is collinear.
All projective properties are a fortior: affine properties; and when
we pass from the projective group to the more restricted affine
group, parallelism is introduced as a new invariant property.

Among the figures entering appropriately into affine geometry
are the parallelogram and the separate kinds of conic, the ellipse,
hyperbola, and parabola. The theorems which belong to affine
geometry include the theorem on the concurrence of the medians
of a triangle, Ceva’s theorem, and the theorems on diameters of
conics.

The coordinates which are suitable for handling affine geometry
are oblique cartesian coordinates (perpendicularity of the axes
in this case producing no essential simplification) or areal co-
ordinates (see p. 25 below). Vectors may also be used; and since .
the scalar product is not involved, only linear vector algebra is
required.



