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Preface

Biological systems are very special substrates for engineering—uniquely
the products of evolution, they are easily redesigned by similar approaches. A
simple algorithm of iterative cycles of diversification and selection, evolution
works at all scales, from single molecules to whole ecosystems. In the little
more than a decade since the first reported applications of evolutionary design
to enzyme engineering, directed evolution has matured to the point where it
now represents the centerpiece of industrial biocatalyst development and is
being practiced by thousands of academic and industrial scientists in compa-
nies and universities around the world. The appeal of directed evolution is easy
to understand: it is conceptually straightforward, it can be practiced without
any special instrumentation and, most important, it frequently yields useful
solutions, many of which are totally unanticipated. Directed evolution has ren-
dered protein engineering readily accessible to a broad audience of scientists
and engineers who wish to tailor a myriad of protein properties, including ther-
mal and solvent stability, enzyme selectivity, specific activity, protease sus-
ceptibility, allosteric control of protein function, ligand binding, transcriptional
activation, and solubility. Furthermore, the range of applications has expanded
to the engineering of more complex functions such as those performed by mul-
tiple proteins acting in concert (in biosynthetic pathways) or as part of macro-
molecular complexes and biological networks.

Not surprisingly, the growth in the ranks of practitioners of directed evolu-
tion, and also in the range of new applications, has led to a proliferation of
experimental methods aimed at simplifying the process and increasing
its efficiency. The purpose of this and the accompanying volume in this series
is to provide a compendium of experimental protocols accessible to scientists
and engineers with minimal background in molecular biology.

Directed Evolution Library Creation focuses on methods for the generation
of molecular diversity. Protocols for random mutagenesis of entire genes or
segments of genes, for homologous and nonhomologous recombination, and
for constructing libraries in vivo in bacteria and yeast are presented. Every one
of these methods has been applied for directed evolution purposes. The opti-
mal choice depends on the many factors that characterize each evolution prob-
lem, and we have often found that any of several different methods will work.
Though there may be multiple molecular solutions to any given functional
problem, the library made for directed evolution must nonetheless contain at
least one of those solutions. And, the higher the frequency of potential solu-
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Vi Preface

tions, the easier it is to find them. Thus, the choice of method for creating
molecular diversity and its particular implementation are important. In addi-
tion to the various protocols for creating libraries, this volume also includes
three chapters that describe ways to analyze libraries, particularly those made
by recombination.

No directed evolution experiment is successful without a good screen or
selection. Directed Enzyme Evolution: Screening and Selection Methods is
devoted entirely to selection and screening methods that can be applied to
directed evolution of enzymes. Directed evolution is not difficult, and these
protocols, prepared by practitioners from many leading laboratories, should
make this robust protein engineering approach accessible to anyone with a
good problem.

Frances H. Arnold

George Georgiou
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1

Generating Mutant Libraries Using Error-Prone PCR

Patrick C. Cirino, Kimberly M. Mayer, and Daisuke Umeno

1. Introduction

Directed evolution has become a powerful tool not only for improving the
utility of enzymes in industrial processes, but also to generate variants that
illuminate the relationship between enzyme sequence, structure, and func-
tion. The method most often used to generate variants with random muta-
tions is error-prone PCR. Error-prone PCR protocols are modifications of
standard PCR methods, designed to alter and enhance the natural error rate of
the polymerase (1,2). Tag polymerase (3) is commonly used because of its
naturally high error rate, with errors biased toward AT to GC changes. How-
ever, recent protocols include the use of a newly-developed polymerase
whose biases allow for increased variation in mutation type (i.e., more GC to
AT changes) (see Note 1).

Error-prone PCR reactions typically contain higher concentrations of
MgCl, (7 mM) compared to basic PCR reactions (1.5 mM), in order to stabi-
lize non-complementary pairs (4,5). MnCl, can also be added to increase the
error-rate (6). Other ways of modifying mutation rate include varying the
ratios of nucleotides in the reaction (7-9), or including a nucleotide analog
such as 8-0xo-dGTP or dITP (10). Fenton et al. (11) describe a mutagenic
PCR protocol that uses dITP as well as provide an analysis of the effects of
dITP and Mn** on PCR products. Mutation frequencies from 0.11 to 2% (1 to
20 nucleotides per 1 kb) have been achieved simply by varying the nucle-
otide ratio and the amount of MnCl, in the PCR reaction (72). The number of
genes that contain a mutation can also be modified by changing the number
of effective doublings by increasing/decreasing the number of cycles or by
changing the initial template concentration.

From: Methods in Molecular Biology, vol. 231: Directed Evolution Library Creation: Methods and Protocols
Edited by: F. H. Arnold and G. Georgiou © Humana Press Inc., Totowa, NJ
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4 Cirino et al.

Given the same error-prone PCR conditions, two different genes will likely
exhibit different mutation frequencies, primarily depending on the length and
base composition of the template DNA. Thus, the best way to check the muta-
tion frequency in an experiment is to estimate it from the fraction of inactive
clones by sampling small numbers (one 96-well plate) of the error-prone PCR
library. This is also a good way to test various conditions to obtain an appropri-
ate level of mutation that allows variants with improvements to be isolated. See
Chapter 8 in the companion volume, Directed Enzyme Evolution: Screening
and Selection Methods, for more detailed information on library analysis.

An expression system and high-throughput assay should be developed
before a library of enzyme variants is generated. To take full advantage of the
power of error-prone PCR, the assay must be accurate enough to detect small
improvements and sensitive enough to detect the low levels of activity typi-
cally encountered in the beginning rounds of an evolution experiment.

2. Materials
2.1. Biological and Chemical Materials

1. Appropriate PCR amplification primers, designed to have similar melting tem-
peratures, stored at —20°C (see Note 2).

2. Plasmid containing gene of interest to be amplified by mutagenic PCR.

3. 50X dNTP mixture: 10 mM each of dATP, dTTP, dCTP, and dGTP (Roche,
Indianapolis, IN). Prepare 20 uL aliquots of this mixture (to avoid excessive
freeze/thaw cycles) and store at —20°C.

4. Individual solutions of dNTPs (10 mM), stored as aliquots at —20°C (see Note 3).

Taq polymerase (Roche, Indianapolis, IN), stored at —20°C (see Notes 3 and 4).

6. 10X Normal PCR Buffer (comes with Roche Tag polymerase): 15 mM MgCl,,
500 mM KClI, 100 mM Tris-HCI, pH 8.3, stored at —20°C.

7. 10X MgCl, solution: 55 mM prepared in water. (Sterilize before use.)

1 mM solution of MnCl, prepared in water. (Sterilized before use.)

9. Agarose gels: 1% LE agarose in 1X TAE (40 mM Tris-acetate, 1| mM ethylene
diamine tetraacetic acid [EDTA]), 0.5 ug/mL ethidium bromide.

10. PCR purification kit (Zymoclean Kit; Zymo Research, Orange, CA).

11. Appropriate restriction enzyme(s) (New England Biolabs (NEB), Beverly, MA),

stored at —20°C.

12. T4 DNA ligase (Roche, Indianapolis, IN), stored at —20°C.

13. Suitable vector for expressing the mutant library: digested, gel-purified, and ready
for ligation of PCR insert.

14. Competent microbial strain(s).

15. Appropriate antibiotic(s).

16. LB (Luria Broth) and LB-agar plates containing antibiotics. (Sterilize before use.)

17. Water. (Sterilize before use.)

18. High-throughput screening materials (e.g., 96-well plates for cell culture and
library expression, 96-well microplates for screening, plate reader, and the like.)

bl
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Mutant Libraries via PCR

2.2. Equipment

1.

Microcentrifuge (Eppendorf 5417R, Brinkmann Instruments, Westbury, NY).

2. Thermocycler (Model PTC200, MJ Research, Waltham, MA).
3. Agarose gel running system.
3. Methods

3.1. Error-Prone PCR Using Taq Polymerase

1.

2

bl i

Prepare purified plasmid DNA and determine its concentration (see Note 5).

. For each PCR sample, add to tube:

10 uL 10X normal error-prone PCR buffer,

2 uL 50X dNTP mix,

Additional dNTPs (optional) (see Note 6),

10 uLL 55 mM MgCl, MnCl, (optional) (see Note 7),

30 pmol each primer,

2 fmol template DNA (~10 ng of an 8-kb plasmid) (see Note 8),
I uL Taq polymerase (5U),

H,O to a final volume of 100 uL.

Mix sample.
Place tubes in thermocycler.
Run Error-Prone PCR Program (see Note 9):

30 s at 94°C, 30 s at annealing temperature for primers (see Note 10),
1 min at 72°C (for a ~1 kb gene) (see Note 11),

14-20 cycles (see Note 12),

5-10 min at 72°C final extension,

4°C (to protect samples overnight if necessary).

Run a sample of the product on a gel to estimate the yield of full-length gene.
Purify PCR products either by gel electrophoresis (removes plasmid DNA) or by
Zymoclean Kit (see Note 13).

Digest with appropriate restriction enzymes (see Note 2). Clean the digested
insert, ligate into expression vector, and transform the mutant library into appro-
priate host strain (see Note 14).

Grow cultures expressing the mutant library (e.g., in 96-well format) and per-
form the corresponding enzyme activity assay.

Determine from the activity profiles of the expressed mutant libraries the most
suitable error conditions for screening, and continue screening that library (see
Note 15). See Fig. 1 for example activity profiles from mutant libraries pre-
pared under various mutagenic conditions. In general, it is desirable to obtain
mutants that contain only a single amino-acid substitution compared to the par-
ent sequence. Higher mutation rates make it difficult to distinguish beneficial
point mutations from those that are neutral or even slightly deleterious. Addi-
tionally, the fraction of mutants with improved function decreases as the muta-
tion rate is increased. Thus, an appropriate PCR error rate for directed evolution
corresponds to a mutation frequency of ~2 to 5 base substitutions per gene.
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Fig. 1. Activity profiles for libraries made under different mutagenic PCR condi-
tions. Activities are reported relative to the average activity of the parent enzyme used
to prepare that generation and are plotted in descending order. The parent gene is 1.4 kb
and codes for the heme domain of cytochrome P450 BM-3. The plot labeled Parent
(®) represents parent enzyme activity measured across an entire 96-well plate.
The standard deviation in parent activity is 9.2%. The remaining three plots
depict the activity profiles from 96-well plates containing different mutant
libraries. All three error-prone PCR reactions contained 20 fmole of the parent gene as
template, plus 7 mM MgCl,, 0.2 mM each of dGTP and dATP, and 1.0 mM each of
dCTP and dTTP. Additionally, reaction A (H) contained 0.1 mM MnCl,, reaction B
(A) contained 0.05 mM MnCl,, and reaction C (O) contained no MnCl,. Libraries A,
B, and C, respectively, consist of 45%, 40%, and 31% mutants with less than 10% of
the parent enzyme’s activity.

Typically an error rate resulting in a library with 30-40% of mutants having less
than 10% of the parent enzyme’s activity (i.e., “dead” mutants) is suitable, al-
though this value will vary depending on the enzyme and the function assayed.

4. Notes

1. Stratagene’s Genemorph kit, which includes its own error-prone PCR protocol,
uses a polymerase (“Mutazyme”) that exhibits a mutation bias quite different
from that of Taq polymerase. Whereas Taq polymerase preferentially introduces
AT to GC mutations, Mutazyme mutations are biased toward GC to AT changes.
It may be desirable to combine the mutation biases of these polymerases by alter-
nating between them in successive generations, or by creating separate mutant
libraries using both polymerases in a single generation.

2. Error-Prone PCR primers can be designed to anneal outside the restriction sites
that will be used for subcloning or can be designed to include the restriction sites
as part of the primer sequence. In our experience, higher levels of ligation effi-
ciency are obtained when primers are located far outside the restriction sites,
presumably because of better digestion efficiency.



