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Preface

Novel approaches in the field of ultrasound imaging are described in this insightful
book. Ultrasonic imaging is an effective diagnostic tool at the disposal of medical
practitioners, engineers and researchers today. Because of its relative safety, and non-
invasive nature, ultrasonic imaging has turned into one of the most quickly developing
technologies and these rapid developments hold a direct connection to the parallel
developments in electronics, computing, and transducer technology along with
sophisticated signal processing techniques. This book targets the novel advancements
in ultrasonic imaging applications and fundamental technologies presented by leading
practitioners and researchers from different parts of the world.

The information contained in this book is the result of intensive hard work done by
researchers in this field. All due efforts have been made to make this book serve as a
complete guiding source for students and researchers. The topics in this book have been
comprehensively explained to help readers understand the growing trends in the field.

I would like to thank the entire group of writers who made sincere efforts in this
book and my family who supported me in my efforts of working on this book. I take
this opportunity to thank all those who have been a guiding force throughout my life.

Editor
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Chapter 1

3D Ultrasound Imaging in Image-Guided Intervention

Aaron Fenster, Jeff Bax, Hamid Neshat,
Nirmal Kakani and Cesare Romagnoli

Additional information is available at the end of the chapter

1. Introduction

Soon after the discovery of x-rays, physicians recognized the importance of using imaging to
guide interventional procedures. As imaging technology became more advanced with the
development of fluoroscopic, CT, MR and ultrasound systems, image-guided interventions
have become a critical tool for physicians in dealing with complex interventional and surgical
procedures. Today, image-guided procedures make use of computer-based systems to provide
real-time three-dimensional (3D) information of the anatomy of the patient being treated. The
information is presented in various ways, such as virtual graphical image overlays, or multi-
screen approaches to help the physician precisely visualize and target the anatomical site.

Since the development of Computed Tomography (CT) in the early 1970s, the availability of
3D anatomical information has revolutionized diagnostic radiology by providing physicians
with 3D images of anatomical structures. The pace of development has continued with the
development of 3D magnetic resonance imaging (MRI), positron Emission Tomography (PET),
and multi-slice and cone beam CT imaging. These imaging modalities have stimulated the
development of a wide variety of image-guided interventional procedures.

Although 2D ultrasound (2D US) imaging has been used extensively for interventional
procedures, such as biopsy and guidance of ablation procedures, 3D ultrasound is slowly
growing in clinical applications [1]. Today, the majority of US-based diagnostic and interven-
tional procedures are still performed using conventional 2D imaging. Over the past two
decades, university-based investigators and commercial companies have utilized both 1D and
2D arrays while developing 3D ultrasound (3D US) imaging techniques. 3D US techniques
have been increasingly used in diagnosis, minimally invasive image-guided interventions and
intra-operative use of imaging [2-4]. Today, most US system manufacturers provide 3D US
imaging capability as part of the systems. Advances in 3D US imaging technology have
resulted in high quality 3D images of complex anatomical structures and pathology, which are
used in diagnosis of disease and to guide interventional and surgical procedures [5-9].
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In this chapter we focus on the recent development of 3D US imaging as it applies to image-
guided interventions. The chapter will briefly review how 3D US images are obtained and then
will provide two examples of recent development of 3D US- guided interventional procedures.

2. 3D ultrasound imaging systems

2.1. Benefits of 3D ultrasound imaging

Conventional 2D US imaging systems making use of 1D transducer arrays allow users to
manipulate the hand-held US transducer freely over the body in order to generate images of
organs and pathology. While this capability is sufficient for many interventional procedures
such as breast biopsy, some interventional procedures require 3D image visualization, which
3D US imaging attempts to provide. More specifically:

* Freely manipulating the conventional US transducer during the interventional procedure
over the anatomy to generate 2D US images requires that users mentally integrate many 2D
images to form an impression of the anatomy and pathology in 3D. In cases of interventions
of complex anatomy or pathology, this approach leads to longer procedures and may result
in variability in guidance of the interventional procedures.

* Since the conventional 2D US imaging transducer is held and manipulated manually, it is
difficult to relocate the 2D US image at the exact location and orientation in the body at a
later time. Since monitoring the progression of the interventional procedure often requires
imaging of the same location (plane) of the anatomy, manual manipulation of a 2D US image
is suboptimal.

* Conventional 2D US imaging does not permit viewing of planes parallel to the skin — often
called C-mode. This approach is, at times, suboptimal since interventional procedures
sometimes require an arbitrary selection of the image plane for optimal viewing of the
pathology and guiding the interventional procedure.

* Planning the interventional procedure and therapy monitoring often require accurate lesion
volume measurements. Since conventional 2D US imaging only provides a cross-section of
the lesion, measurements of organ or lesion volume is variable and at times inaccurate.

The following sections review approaches used in generation of 3D US images based on 1D.
An emphasis is placed on the geometric accuracy of the generated 3D images as well as the
use of this technology in interventional and quantitative monitoring applications.

2.2, Mechanical 3D US scanning systems

Mechanical 3D US systems make use of mechanisms using motors to translate, tilt, or rotate a
conventional 2D US transducer. A sequential digitized series of 2D USimages and their relative
positions and orientation are acquired rapidly by acomputer as the 2D US transducer is moved,
while the 3D US image is reconstructed. Since the scanning geometry in mechanical 3D US
systems is predefined and precisely controlled by a mechanical motorized system, the relative
position and orientation of the acquired 2D US images are known accurately and precisely.
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These mechanical 3D scanning systems allow the user to optimize the image resolution by
adjusting the angular or spatial interval between the acquired 2D image [10].

Two approaches have been used in the development of mechanical 3D US scanning systems:
integrated 3D US transducers with the scanning mechanism within the transducer housing;
and external mechanical fixtures that hold the housing of a conventional 2D US transducers.
Both approaches have been successfully used for a variety of clinical applications including
interventional applications.

2.2.1. Wobbling or tilting mechanical 3D US scanners

Most US system manufacturers offer integrated 3D US transducers that are based on a
mechanically-swept transducer or “wobbler”. In these systems a 1D US array is wobbled or
swept back and forth inside the 3D transducer housing. Digital 2D US images that are
generated while the 1D US array is wobbled, which are used in the 3D US image reconstruction.
These 3D transducers are larger than conventional 2D US transducers. These types of 3D US
transducers are convenient to use but require a special US machine that can control the 3D
scanning and reconstruct the acquired 2D images into a 3D image.

Many interventional 3D US-guided interventional systems are currently using external
fixtures for mechanical 3D scanning since researchers typically do not get access to the control
of the US system for development of novel interventional systems. In this approach, a
motorized custom made fixture is used to house the conventional 2D US transducer. A
computer is used to control the motor to cause the US transducer to tilt or “wobble”. The video
stream from the US machine is digitized using an analogue or digital frame grabber. Since the
relative angle between the acquired 2D images is known, a 3D image can be reconstructed as
the 2D images are acquired.

Although the external mechanical 3D scanning fixtures are bulkier than integrated 3D
transducers, they can be used with any US manufacturer’s transducer, obviating the need to
purchase a special 3D US machine. In addition, the external fixture approach can take advant-
age of improvements in the US machine (e.g., image compounding, contrast agent imaging)
and flow information (e.g., Doppler imaging) without any changes in the scanning mechanism.

Both approaches used in mechanical 3D US scanning allow short imaging times, ranging from
about 3 to 0.2 3D images/s. The 3D images are of high quality and also include B-mode and
Doppler information.

Figure 1a is a diagram of the mechanical tilt approach of a conventional 1D array US transducer
about an axis parallel to the face of the transducer, and 1b shows the tilting axis away from the
face of the transducer. The latter approach is typically used in integrated 3D scanning mech-
anisms. In both approaches, the acquired 2D US images are arranged as a fan with an adjustable
angular spacing, e.g., 1.0°. To generate a 3D image, the housing of the 3D probe or external
fixture remains fixed on the skin of the patient while the US transducer is wobbled. The time
required to generate a 3D US image depends on the 2D US image update rate and the number
of 2D images needed to generate the 3D image. The 2D US image update rate depends on the
US machine settings (i.e., depth setting and number of focal zones) and number of acquired
2D USimages is determined by the chosen angular separation between the acquired 2D images,
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and the total scan angle needed to cover the desired anatomy. Typically, these parameters can
be adjusted to optimize scanning time, image quality and the size of the volume imaged
[11-16]. The most common integrated 3D transducers using the wobbling technique are used
for abdominal and obstetrical imaging [17-19].

The 3D image resolution will not be isotropic. The resolution in the 3D US image will degrade
in the axial direction away from the transducer due to the increasing US beam spread in the
lateral and elevational directions of the acquired 2D US images. Since the acquired 2D images
used to generate a 3D image are arranged as a fan, the distance between the acquired US images
increases with increasing axial distance. Increasing axial distances result in decreasing spatial
sampling resulting in further loss of spatial resolution in the elevational direction of the
acquired 2D US images of the reconstructed 3D image [20].

Figure 1. Schematic diagrams of 3D US mechanical scanning methods. (a) A side-firing TRUS transducer is mechanical-
ly rotated and the acquired images have equal angular spacing. The same approach is used in a mechanically-wob-
bled transducer. (b) A rotational scanning mechanism using an end-firing transducer, typically used in 3D TRUS guided
prostate biopsy. The acquired images have equal angular spacing. (c) A linear mechanical scanning mechanism, in
which the acquired images have equal spacing. (d) The mechanically tilting mechanism, but integrated into a 3D US
transducer. The US transducer is "wobbled" inside the housing of the transducer.
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2.2.2. Linear mechanical 3D scanners

Linear scanners mechanisms use an external motorized fixture to move the conventional 2D
transducer across the skin of the patient. The 2D transducer can be fixed to be perpendicular
to the surface of the skin or at an angle for acquiring Doppler images. The spacing between
the acquired 2D images is adjustable but constant during the scan so that the acquired 2D
images are parallel and uniformly spaced (see Fig. 1c). The velocity of the transducer as it is
being scanned is adjusted to obtain 2D images with an appropriate spatial interval for
generating high quality 3D images [10].

The predefined spacing between the acquired 2D US images allows 3D images to be recon-
structed while the 2D US images are being acquired. In the direction parallel to the acquired
2D US images the resolution of the reconstructed 3D US image will be the same as the original
2D USimages. However, in the direction of the 3D scanning, the resolution of the reconstructed
3D image will be equal (if spatial sampling is appropriate) to the elevational resolution of the
acquired 2D US images. Thus, the resolution of the 3D US image will be poorest in the 3D
scanning direction due to greater spread of the US beam in the elevational direction [21].

This scanning approach is not typically used in interventional applications; however, it has
been successfully implemented in many vascular B-mode and Doppler imaging applications,
particularly of for carotid arteries [11, 22-30] and tumor vascularization [25, 31-33].

2.2.3. Endo-cavity rotational 3D scanners

The endo-cavity rotational 3D scanning approach has been used extensively in 3D US-guided
prostate interventional procedures. In this approach an external fixture or internal mechanism
is used to rotate an endo-cavity transducer (e.g., a transrectal ultrasound (TRUS) probe, see
Fig. 1b) about its long axis. Endo-cavity transducers using an end-firing approach are typically
used for prostate biopsy. When these types of conventional transducers are rotated by the
motorized fixture, the set of acquired 2D images will be arranged as a fan (Fig. 1b), intersecting
in the center of the 3D US image, resulting in an image as shown in Fig. 2. To obtain a 3D image
of the prostate as in Fig. 2, an end-firing transducer is typically rotated by 180° [16].

Endo-cavity transducers using a side-firing 1D array are typically used in prostate brachy-
therapy, cryotherapy and focal therapy. When using these types of conventional transducers,
the acquired images will also be arranged as a fan, but intersect at the axis of rotation of the
transducer (see Fig. 1a). The side-firing transducer is typically rotated from 80° to 110° to obtain
a 3D TRUS image of the prostate [16, 34, 35]. Figure 2 shows that endo-cavity scanning
transducer used to image the prostate for 3D US-guided therapy [6, 9, 11, 25, 34, 36-39]

For scanning systems used for 3D US-guided prostate biopsy, the end-firing transducer is
rotated by at least 180° about a fixed axis that perpendicularly bisects the transducer array. In
this approach, the resolution of the 3D image will not be isotropic. Since the spatial sampling
is highest near the rotation axis of the transducer and the poorest away from the axis of rotation
of the transducer, thus the resolution of the 3D US image will degrade as the distance from the
rotational axis of the transducer is increased. In addition, the axial and elevational resolution
will decrease as the distance from the transducer is increased, as discussed above. The
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combination of these effects will result in a 3D US image resolution that is best near the
transducer and the rotational axis, while being poorest away from the transducer and rota-
tional axis.

3D rotational scanning with an end-firing transducer is most sensitive to the motion of the
transducer and patient since the axis of rotation is in the center of the 3D US image. Any motion
during the 3D scan will cause a mismatch in the acquired 2D US images, resulting in artifacts
in the center of the 3D US image. Artifacts in the center of the 3D US image will also occur if
the axis of rotation is not accurately known; however, proper calibrations can remove this
source of potential error. Thus, for interventional applications such as 3D US-guided prostate
biopsy or brachytherapy, the rotational scanning mechanism is typically supported by a
stabilization apparatus [16, 34, 40].

Figure 2. The 3D US of the prostate displayed using the multi-planar reformatting approach: (a) An end-firing TRUS
prostate cube-view 3D image, allowing the sides to be translated and angles to reveal the desired anatomy. (b) A 3D
TRUS image acquired using a side-firing transducer using the mechanical rotation approach.

2.2.4. Free-hand scanning with position sensing

Some 3D US-guided interventional procedures are making use of 3D scanning techniques that
do not require a mechanical scanning device. In this approach, the user holds and manipulates
a conventional US transducer to cover the patient’s anatomy being investigated. Since
construction of a 3D US image requires that the position and orientation of the conventional
transducer be known, free-hand scanning requires a method to track the positions and
orientations of the transducer as it is being moved. All methods to accomplish this task require
a sensor to be mounted on the transducer to allow measurement of the conventional 2D
transducer’s position and orientation as it is moved over the body.

Over the past 2 decades, several approaches for free-hand scanning have been developed:
tracked 3D US with articulated arms, free-hand 3D US with acoustic sensing, free-hand 3D US
with magnetic field sensing, and image-based sensing (speckle decorrelation). The method
used most commonly is the magnetic field sensing approach with several companies providing
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the sensing technology: Ascension — Bird sensor [3] Polhemus — Fastrack sensor [41] and
Northern Digital — Aurora sensor [4].

The most successful free-hand 3D US scanning approach used in interventional procedures
makes use of magnetic field sensors, as well as applications such as echocardiography,
obstetrics, and vascular imaging [3, 4, 41-51]. To track the transducer during generation of a
3D US image, a small receiver is mounted on the transducer containing three orthogonal coils
allowing six-degrees-of-freedom sensing. The small receiver mounted on the transducer
measures the strength of the magnetic field in three orthogonal directions, which is generated
by a time-varying 3D magnetic field transmitter placed near the patient. The position and
orientation of the transducer is calculated by continuously measuring the strength of the three
components of the local magnetic field.

Since magnetic field sensors are small and unobtrusive devices, they allow the transducer to
be tracked without the need for bulky mechanical devices, and without the need to keep a clear
line of sight as required by optical tracking methods. Since magnetic field sensors are sensitive
to electromagnetic interference or ferrous (or highly conductive) metals located nearby,
geometric tracking errors can occur leading to distortions in the 3D US image. Thus, metal
beds used in procedures, or surgical rooms can cause significant distortions. However, modern
magnetic field sensors have been produced to be less susceptible to these sources of error,
particularly ones that use a magnetic transmitter placed between the bed and the patient.

3. 3D Ultrasound-guided focal liver ablation

3.1. Clinical problem

Hepatocellular carcinoma (HCC) is the fifth most common diagnosed malignancy and the
third most frequent cause of cancer related deaths worldwide [52]. Incidence is particularly
high in Asia and sub-Saharan Africa due to the large incidence of hepatitis B and C, both of
which are complicated by hepatic cirrhosis, which is the greatest risk factor for HCC. Recently,
increasing trends in HCC have been reported from several Western countries [53]. Further-
more, the liver is the second most common site of metastatic cancer arising in other organs.

When feasible, surgical resection or liver transplant is the accepted standard therapeutic
approach, and currently has the highest success rate of all treatment methods for primary and
metastatic liver cancer. Unfortunately, only 15% of patients are candidates for surgery [54,
55]. Patients who do not qualify for surgery usually are offered other therapeutic solutions
such as chemotherapy and radiotherapy, but unfortunately have variable limited success rates.

Minimally invasive percutaneous techniques, such as radio-frequency (RF) and microwave
(MW) ablation of malignant tissue in the liver is a rapidly expanding research field and treat-
ment tool for those patients who are not candidates for surgical resection or transplant. In some
cases this acts as a bridge to liver transplantation [54, 56]. Due to low complications rates and
shorter recovery times, the indications for these minimally invasive procedures are constantly
increasing. However, these methods have a higher local recurrence rate than surgical resec-
tion, mostly due to insufficient or inaccurate local ablation of cancerous cells [56, 57].
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Microwave energy-induced tissue heating by near-field probes is emerging as a common
thermal treatment of liver tumors [58]. Application of MW for tumor ablation has multiple
advantages over other techniques, including higher treatment temperatures and the ability to
create larger uniformly shaped ablation zones in shorter time periods. However, the accurate
placement of the probe is critical in achieving the predicted treatment goal [59]. The current
standard of care uses CT images for planning and 2D US image guidance for intra-operative
guidance of the ablation probe(s) into the target lesion. However, this approach suffers from
several disadvantages, such as: (1) 2D US imaging requires physicians to mentally integrate
many 2D images to form an impression of the anatomy and pathology, leading to more
variability in guidance during interventional procedures; (2) 2D US does not permit the
viewing of planes parallel to the skin, (3) liver deformation and motion artifact due to breathing
reduces targeting accuracy, (4) 2D US-based for measurement of tumor volume needed for the
treatment plan is variable and at times inaccurate, and (5) the detection and tracking of the
needle delivering the thermal energy in the liver is crucial for accurate placement of the needle
relative to the tumor, but can be difficult using 2D US. 3D US imaging of the liver and target
may help to overcome these disadvantages resulting in improved accuracy of probe placement
and improved ablation of the lesion.

The use of 3D US-guidance for focal liver tumor ablation is based on the fact that the use of
3D US will show the features of liver masses and the hepatic vasculature more clearly, allow
guidance of the ablation probes to the target more accurately, and allow more accurate
monitoring of the ablation zone during the procedure and at follow up.

3.2. 3D US Scanner for focal liver tumor ablation

We have developed 3D US guidance systems for improving cancer diagnosis and treatment
by introducing hardware and software innovations [21, 60-64]. Our previous efforts have been
extended to the development of a 3D US-guidance system for treating HCC. Specialized
hardware and software tools are used that allow 3D acquisition of 3D US images, real-time
registration of the pre-operative CT to intra-operative 3D US images, and tracking of the
ablation probes during insertion into the target. This is accomplished by registering previously
acquired contrast CT images that show the location of the target lesion to near real-time 3D
US images, plus providing visualization and guidance tools to guide the procedure.

The 3D US scanning system consists of: a hand-held electro-mechanical motor/encoder assem-
bly to move a conventional 2D US imaging transducer in a fan shaped, linear or hybrid motion
to a maximum angular limit of 60 degrees and/or 30 mm linear extent to acquire a series of 2D US
images; and, a PCequipped witha digital frame grabber and software components to control the
motor assembly, acquire 2D images, reconstruct them in 3D, and visualize them in 3D.

3.2.1. Mechanical design

The handheld 3D scanning device is motorized and constructed with two mechanical systems
for generating a linear and tilt scanning motions of the transducer is shown schematically and
photographically in Figs. 3 and 4. The linear scanning system is operated with a geared DC
motor and lead screw providing linear translation. The tilt motion is generated via a paralle-
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logram linkage, which is mounted on the carriage of the linear slide. A second geared DC

motor is used to generate the tilt motion, allowing for independent control of the two systems.

Start Finish

Figure 3. Schematic diagram of the hybrid 3D US scanner for used in the focal liver ablation procedure. The diagram
shows the start and end positions of the hybrid (linear and tilt) scan.
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Figure 4. Photograph of hybrid scanner with abdominal ultrasound transducer mounted and ready for scanning

The 3D scanning device has three modes of operation: a linear translation, in which the
transducer (oriented perpendicular to the surface or at an angle for Doppler imaging) is
translated along a straight line parallel to the patient’s surface. This motion generates a
rectangular volume shown in Fig. 5a. The second mode generates a tilt motion (or wobbling),
in which the transducer is rotated about its face resting on the patient’s skin surface (Fig. 5b).
The third mode is a combination of the first two modes that creates a combined (or hybrid)
motion. The transducer is rotated as it is moved along a surface covering a larger volume than
either of the first two modes (Fig. 5c). For example, if transducer with linear array is used at
15cm depth setting on the ultrasound machine (typical depth for abdominal imaging), hybrid
scanning gives a volume that is three times larger than the linear mode and 47% larger than
the tilt mode only.

Ultrasound
Transducer— LINEAR TILT or SWEEP HYBRID
~—Parallelogram

Linkage

2d Plane of the
Ultrasound Image

Figure 5. Schematic diagrams showing the three modes of operation of the mechanical compound 3D US scanning
device. On the left is the schematic of the linkage and the right are the linear, tilt and hybrid motions.
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The 3D scanning system parameters can be set by the user: Scanning mode: Three different
modes of linear, tilt and combined (or hybrid, a combination of both linear and tilt imaging
modes to maximize the field-of-view) are available depending on the anatomy of body parts
being scanned and the image requirements. Scan Extent: Maximum extent of linear translation
(typically 2.5 cm) or tilt angle (typically 60 deg) can be set individually to the extremes values.
Scan Spacing: Elevational linear and angular spacing can be set to optimize the trade-off
between the scanning time and the scan spacing. Frame-Rate: The rate at which images are
digitized by the frame grabber is set (typically 15 frames/s). Scanning Depth: Maximum
scanning depth can be set prior to each scan for accurate reconstruction of the volumes.

3.2.2. Validation methods

Since the hybrid scanning mode involves coordination between two acquisition methods, it
was tested in terms of accuracy of 3D image generation. We used two custom made phantoms
with known geometry. The validation experiments where performed using the handheld 3D
US scanning device in hybrid scanning mode using a two-dimensional conventional curved
array ultrasound transducer used for abdominal applications (Toshiba, PVT-375BT).

Geometrical Error in 3D reconstruction: This test was designed to measure the accuracy of the
3D reconstruction of the 3D hybrid scanner in three directions. The test phantom was made of
a grid of known dimensions made with 0.1 mm thick nylon monofilament threads wrapped
around an accurately machined frame to form a 4-layer grid. Each layer was slightly shifted
from the layer above to avoid acoustic shadowing. The distance between any two layers was
lcm. The phantom was submerged in a 15% glycerol solution [61] and imaged at different
depth settings. The acquired 3D US images were then viewed and analyzed by measuring the
distances between the images of the monofilaments and comparing them to the expected
values.

Figure 6. (a) Photograph of the 3D monofilament thread grid, which was used to validate the 3D reconstruction of
the ultrasound image. (b) The 3D ultrasound image of the phantom, showing the grid of threads.

Error in 3D volume measurements: In the second test, we assessed the accuracy in measuring
volumes using our system. For this experiment, several spherical phantoms with different sizes
were made of tissue mimicking agar [65]. The volume of each of these spherical phantoms was
measured prior to embedding them in a cube of tissue mimicking agar phantom. The spherical



