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Preface

This tract provides a rigorous self-contained account of the mathematics of
sets of fractional and integral Hausdorfl dimension. It is primarily
concerned with geometric theory rather than with applications. Much of
the contents could hitherto be found only in original mathematical papers,
many of which are highly technical and confusing and use archaic notation.
In writing this book I hope to make this material more readily accessible
and also to provide a useful and precise account for those using fractal sets.

Whilst the book is written primarily for the pure mathematician, I hope
that it will be of use to several kinds of more or less sophisticated and
demanding reader. At the most basic level, the book may be used as a
reference by those meeting fractals in other mathematical or scientific
disciplines. The main theorems and corollaries, read in conjunction with
the basic definitions, give precise statements of properties that have been
rigorously established.

To get a broad overview of the subject, or perhaps for a first reading, it
would be possible to follow the basic commentary together with the
statements of the results but to omit the detailed proofs. The non-specialist
mathematician might also omit the details of Section 1.1 which establishes
the properties of general measures from a technical viewpoint.

A full appreciation of the details requires a working knowledge of
elementary mathematical analysis and general topology. There is no doubt
that some of the proofs central to the development are hard and quite
lengthy, but it is well worth mastering them in order to obtain a full insight
into the beauty and ingenuity of the mathematics involved.

There is an emphasis on the basic tools of the subject such as the Vitali
covering theorem, net measures, and potential theoretic methods.

The properties of measures and Hausdorfl measures that we require are
established in the first two sections of Chapter 1. Throughout the book the
emphasis is on the use of measures in their own right for estimating the size
of sets, rather than as a step in defining the integral. Integration is used only
as a convenient tool in the later chapters; in the main an intuitive idea of
integration should be found perfectly adequate.

Inevitably a compromise has been made on the level of generality
adopted. We work in n-dimensional Euclidean space, though many of the
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viil Preface

ideas apply equally to more general metric spaces. In some cases, where the
proofs of higher-dimensional analogues are much more complicated,
theorems are only proved in two dimensions, and references are supplied
for the extensions. Similarly, one- or two-dimensional proofs are sometimes
given if they contain the essential ideas of the general case, but permit
simplifications in notation to be made. We also restrict attention to
Hausdorfl measures corresponding to a numerical dimension s, rather than
to an arbitrary function.

A number of the proofs have been somewhat simplified from their
original form. Further shortenings would undoubtedly be possible, but the
author’s desire for perfection has had to be offset by the requirement to
finish the book in a finite time!

Although the tract is essentially self-contained, variations and extensions
of the work are described briefly, and full references are provided. Further
variations and generalizations may be found in the exercises, which are
included at the end of each chapter.

It is a great pleasure to record my gratitude to all those who have helped
with this tract in any way. I am particularly indebted to Prof Roy Davies for
his careful criticism of the manuscript and for allowing me access to
unpublished material, and to Dr Hallard Croft for his detailed suggestions
and for help with reading the proofs. I am also most grateful to Prof B.B.
Mandelbrot, Prof J.M. Marstrand, Prof P. Mattila and Prof C.A. Rogers
for useful comments and discussions.

I should like to thank Mrs Maureen Woodward and Mrs Rhoda Rees for
typing the manuscript, and also David Tranah and Sheila Shepherd of
Cambridge University Press for seeing the book through its various stages
of publication. Finally, I must thank my wife, Isobel, for finding time to read
an early draft of the book, as well as for her continuous encouragement and

support.



Introduction

The geometric measure theory of sets of integral and fractional dimension
has been developed by pure mathematicians from early in this century.
Recently there has been a meteoric increase in the importance of fractal sets
in the sciences. Mandelbrot (1975, 1977, 1982) pioneered their use to model
a wide variety of scientific phenomena from the molecular to the
astronomical, for example: the Brownian motion of particles, turbulence in
fluids, the growth of plants, geographical coastlines and surfaces, the
distribution of galaxies in the universe, and even fluctuations of price on the
stock exchange. Sets of fractional dimension also occur in diverse branches
of pure mathematics such as the theory of numbers and non-linear
differential equations. Many further examples are described in the scientific,
philosophical and pictorial essays of Mandelbrot. Thus what originated as
a concept in pure mathematics has found many applications in the sciences.
These in turn are a fruitful source of further problems for the mathema-
tician. This tract is concerned primarily with the geometric theory of such
sets rather than with applications.

The word ‘fractal’ was derived from the latin fractus, meaning broken, by
Mandelbrot (1975), who gave a ‘tentative definition’ of a fractal as a set with
its Hausdorff dimension strictly greater than its topological dimension, but
he pointed out that the definition is unsatisfactory as it excludes certain
highly irregular sets which clearly ought to be thought of in the spirit of
fractals. Hitherto mathematicians had referred to such sets in a variety of
ways — ‘sets of fractional dimension’, ‘sets of Hausdorfl measure’, ‘sets with
a fine structure’ or ‘irregular sets’. Any rigorous study of these sets must also
contain an examination of those sets with equal topological and Hausdorfl
dimension, if only so that they may be excluded from further discussion. I
therefore make no apology for including such regular sets (smooth curves
and surfaces, etc.) in this account.

Many ways of estimating the ‘size’ or ‘dimension’ of ‘thin’ or ‘highly
irregular’ sets have been proposed to generalize the idea that points, curves
and surfaces have dimensions of 0, 1 and 2 respectively. Hausdorff
dimension, defined in terms of Hausdorfl measure, has the overriding
advantage from the mathematician’s point of view that Hausdorff measure
is a measure (i.e. is additive on countable collections of disjoint sets).
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X Introduction

Unfortunately the Hausdorfl measure and dimension of even relatively
simple sets can be hard to calculate; in particular it is often awkward to
obtain lower bounds for these quantities. This has been found to be a
considerable drawback in physical applications and has resulted in a
number of variations on the definition of Hausdorfl dimension being
adopted, in some cases inadvertently.

Some of these alternative definitions are surveyed and compared with
Hausdorff dimension by Hurewicz & Wallman (1941), Kahane (1976),
Mandelbrot (1982, Section 39), and Tricot (1981, 1982). They include
entropy, see Hawkes (1974), similarity dimension, see Mandelbrot (1982),
and the local dimension and measure of Johnson & Rogers (1982). It would
be possible to write a book of this nature based on any such definition, but
Hausdorff measure and dimension is, undoubtedly, the most widely
investigated and the most widely used.

The idea of defining an outer measure to extend the notion of the length
of an interval to more complicated sets of real numbers is surprisingly
recent. Borel (1895) used measures to estimate the size of sets to enable him
to construct certain pathological functions. These ideas were taken up by
Lebesgue (1904) as the underlying concept in the construction of his
integral. Carathéodory (1914) introduced the more general ‘Carathéodory
outer measures’. In particular he defined ‘I-dimensional’ or ‘linear’ measure
in n-dimensional Euclidean space, indicating that s-dimensional measure
might be defined similarly for other integers s. Hausdorfl (1919) pointed out
that Carathéodory’s definition was also of value for non-integral s. He
illustrated this by showing that the famous ‘middle-third’ set of Cantor had
positive, but finite, s-dimensional measure if s =1log2/log3 =0.6309.. ..
Thus the concept of sets of fractional dimension was born, and HausdorfT’s
name was adopted for the associated dimension and measure.

Since then a tremendous amount has been discovered about Hausdorff
measures and the geometry of Hausdorff-measurable sets. An excellent
account of the intrinsic measure theory is given in the book by Rogers
(1970), and a very general approach to measure geometry may be found in
Federer’s (1969) scholarly volume, which diverges from us to cover
questions of surface area and homological integration theory.

Much of the work on Hausdorff measures and their geometry is due to
Besicovitch, whose name will be encountered repeatedly throughout this
book. Indeed, for many years, virtually all published work on Hausdorff
measures bore his name, much of it involving highly ingenious arguments.
More recently his students have made many further major contributions.
The obituary notices by Burkill (1971) and Taylor (1975) provide some idea
of the scale of Besicovitch’s influence on the subject.



Introduction Xi

Itisclear that Besicovitch intended to write a book on geometric measure
theory entitled The Geometry of Sets of Points, which might well have
resembled this volume in many respects. After Besicovitch’s death in 1970,
Prof Roy Davies, with the assistance of Dr Helen Alderson (who died in
1972), prepared a version of what might have been Besicovitch’s ‘Chapter 1°.
This chapter was not destined to have any sequel, but it has had a
considerable influence on the early parts of the present book.

In our first chapter we define Hausdorff measure and investigate its basic
properties. We show how to calculate the Hausdorff dimension and
measure of sets in certain straightforward cases.

We are particularly interested in sets of dimension s which are s-sets, that
is, sets of non-zero but finite s-dimensional Hausdorfl measure. The
geometry of a class of set restricted only by such a weak condition must
inevitably consist of a study of the neighbourhood of a general point. Thus
the next three chapters discuss local properties: the density of sets at a point,
and the directional distribution of a set round each of its points, that is, the
question of the existence of tangents. Sets of fractional and integral
dimension are treated separately. Sets of fractional dimension are neces-
sarily fractals, but there is a marked contrast between the regular ‘curve-
like’ or ‘surface-like’ sets and the irregular ‘fractal’ sets of integral
dimension.

Chapter 5 introduces the powerful technique of net measures. This
enables us to show that any set of infinite s-dimensional Hausdorff measure
contains an s-set, allowing the theory of s-sets to be extended to more
general sets as required. Net measures are also used to investigate the
Hausdorfl measures of Cartesian products of sets.

The next chapter deals with the projection of sets onto lower-
dimensional subspaces. Potential-theoretic methods are introduced as an
alternative to a direct geometric approach for parts of this work.

Chapter 7 discusses the ‘Kakeya problem, of finding sets of smallest
measure inside which it is possible to rotate a segment of unit length. A
number of variants are discussed, and the subject is related by duality to the
projection theorems of the previous chapter, as well as to harmonic
analysis.

The final chapter contains a miscellany of examples that illustrate some
of the ideas met earlier in the book.

References are listed at the end of the book and are cited by date. Further
substantial bibliographies may be found in Federer (1947, 1969), Rogers
(1970) and Mandelbrot (1982).






Notation

With the range of topics covered, particularly in the final chapter, it is
impossible to be entirely consistent with the use of notation. In general,
symbols are defined when they are first introduced ; these notes are intended
only as a rough guide.

We work entirely in n-dimensional Euclidean space, R". Points of R",
which are sometimes thought of in the vectorial sense, are denoted by small
letters, x, y, z etc. Occasionally we write (x, y) for Cartesian coordinates.
Capitals, E, F, T, etc. are used for subsets of R", and script capitals, €, ¥, #,
for families of sets. We use the convention that the set-inclusion symbol
< allows the possibility of equality. The diameter of the set E is denoted by
|E|, though, when the sense is clear, the modulus sign also denotes the
length of a vector in the usual way, thus |x — y| is the distance between the
points x and y. Constants, b, c, ¢, , ¢, 6, and indices, i, j, k, are also denoted by
lower case letters which may be subscripted.

The following list may serve as a reminder of the notation in more
frequent use.

Sets

R" n-dimensional Euclidean space.

B,(x) closed disc or ball, centre x and radius r.

S,(x,0,9) sector of angle ¢ and radius r.

C,(x, 1) double sector.

R(x, y) common region of the circle-pair with centres x and y.
G,k Grossmann manifold of k-dimensional subspaces of R".
L{a,b), L(E) line sets.

E,intE topological closure, respectively interior, of E.

[E], the 4-parallel body to E.

Mappings

Projg, projy orthogonal projection onto the line in direction 6, resp.

S
Sog

the plane I1.
Fourier transforms of the function f and measure pu.
composition of the mappings, g followed by f.
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Measures etc.
K

gn

M

Ky My
Z(I)

dim E

¢l’ Ct’ It

Densities

D*(E, x)

D*(E, x), D*(E, x),
D:(E, x)

D*(E, x,6,¢)

Notation

s-dimensional Hausdorff measure or outer measure.
n-dimensional Lebesgue measure.

s-dimensional comparable net measure.

d-outer measures used in constructing #* and #°.
length of the curve I'.

Hausdorff dimension of E.

t-potential, capacity, energy.

density of E at x.

lower, upper densities.
upper convex density.
lower angular density, etc.
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