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Introduction: Crystal Structure Prediction, a Formidable Problem
Artem R. Oganov

The famous 1988 editorial in Nature by John Maddox [1] stated:

“One of the continuing scandals in the physical sciences is that it remains in
general impossible to predict the structure of even the simplest crystalline solids
[from a knowledge of their chemical composition”.

The central topic of the present volume is to review the state of the art in resolving
this “scandal”. Crystal structure is arguably the most important piece of information
about a material, as it determines — directly or indirectly — pretty much all properties
of a material. Knowing the structure, one can compute a large number of properties
of a material, even before it is synthesized — hence the crucial importance of
structure prediction for computational materials design. When the structure is
unknown and cannot be predicted, very little can be said about the material.

Until recently, it was widely believed that crystal structures are fundamentally
unpredictable [1-3] — as human behavior, or earthquakes, or long-term behavior of
stock exchange. However, the situation began to change dramatically in 2003—2006,
and this avalanche-like development of this important field can be called a scientific
revolution that continues to this day. The aim of this book is to present some of the
most important modern approaches to the formidable problem of crystal structure
prediction.

What do we exactly mean by “crystal structure prediction problem”? For each
chemical composition there are an infinite number of possible atomic arrangements
that can, in principle, be obtained in the laboratory — these correspond to all possible
local minima of the free energy. Among these, at each thermodynamic conditions
(pressure, temperature, chemical potential) there are a finite number of special
structures, extreme in some sense — the lowest energy (i.e. the most stable
structures), the highest/lowest value of some other property (hardness, density,
band gap, superconducting T, ...), or highest rate of nucleation (corresponding
to kinetically preferred phases). Prediction of these structures is a well-defined and
crucially important problem. In the simplest and most important case, by crystal
structure prediction we mean finding, at given P-T conditions, the stable crystal
structure knowing only the chemical formula.
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Introduction: Crystal Structure Prediction, a Formidable Problem

(a) (b)

Figure 1 Structures of metastable superhard sp*-bonded al-
lotropes of carbon: (a) M-carbon [5] and (b) bct4-carbon [6].

Many types of approaches have been proposed to address this problem. Some
are topological (as reviewed in the chapter by Blatov and Proserpio [4]) and aim
at constructing the simplest topologies consistent with what we know about the
chemistry of the system. This way, assuming sp’-hybridization of carbon atoms
one would arrive at 2H-graphite structure, and assuming sp*-hybridization one
would find the diamond and lonsdaleite structures — and a vast array of interest-
ing metastable structures, including clathrates, M-carbon (Figure 1a), bct-carbon
(Figure 1b) and other possible allotropes.

Topological approaches often appeal to symmetry, since in the vast majority of
cases stable crystal structures do display some symmetry — the asymmetric point
group 1 (or corresponding to it space group P1) is very rare (see Table 1). The
ubiquity of symmetry may simplify the task of structure prediction, and not only
in topological approaches.

Other approaches are based on empirical correlations and involve either structural
diagrams [8—10] or data mining approaches [11, 12]. In either case, a large database
of known stable crystal structures is required. While data mining approaches
involve advanced machine learning concepts and are capable of predicting not
only stable structures, but also the likelihood of compound formation in multinary
systems (a formidable task too!), structural diagrams are much more empirical and
limited in their scope. In these, one frequently uses ionic radii or the so-called
“pseudopotential radii” [9], both of which (especially the latter) lack strict physical
meaning and uniqueness. Instead of the “pseudopotential radii” one could use
other quantities, such as the chemical scale or the Mendeleev number — the
resulting empirical structure diagrams seem to have a good ability to separate
structure types (e.g., Figure 2), and thus have predictive power.

The most unbiased, non-empirical and hence most generally applicable ap-
proaches are based on computational optimization — i.e. explicit calculations of
the (free) energy and exploration of its landscape with the aim of finding the
most stable arrangement of the atoms. These approaches are the main focus of



Introduction: Crystal Structure Prediction, a Formidable Problem | xiii

Table 1 Distribution of 280 000 chemical compounds over

the 32 point groups. Note somewhat different frequencies for
inorganic (1) and organic (O) compounds. (data collected by
G. Johnson and published in [7]).

1 o | o
1 0.67% 1.24% 422 0.40% 0.48%
1 13.87 19.18 4mm 0.30 0.09
2 2.21 6.70 42m 0.82 0.34
M 1.30 1.46 4/mmm 4.53 0.69
2/m 34.63 44.81 6 0.41 0.22
222 3.56 10.13 6 0.07 0.01
mm?2 3.32 3.31 6/m 0.82 0.17
mmm 12.07 784 622 0.24 0.05
3 0.36 0.32 6mm 0.45 0.03
3 1.21 0.58 6m2 0.41 0.02
32 0.54 0.22 6/mmm 2.82 0.05
3m 0.74 0.22 23 0.44 0.09
3m 3.18 0.25 m3 0.84 0.15
4 0.19 0.25 432 0.13 0.01
4 0.25 0.18 43m 1.42 0.11
4/m 1.17 0.67 m3m 6.66 0.12

this book. Among the advantages are (i) the explicit calculation of the optimized
quantity of interest (e.g., the energy), (ii) unbiased search techniques for exploring
the energy landscape can — unlike the previously mentioned approaches, assum-
ing knowledge of material’s chemistry and likely crystal structures — arrive at
completely unexpected results and truly novel structures. For instance, who would
guess (based on whatever chemical knowledge) that boron under pressure would
assume a NaCl-type structure composed of B, and By, clusters with partially ionic
bonding between the two? Who would guess that, when compressed to 2 million
atmospheres, sodium assumes a structure unknown for any other element and
becomes a transparent dielectric? Nevertheless, this is exactly what happens [13,
14], and these phenomena were first predicted using optimization techniques and
only then confirmed experimentally.

When considering crystal structure prediction as an optimization problem —
i.e. the problem of finding the global minimum of the energy landscape, certain
properties of this landscape need to be explored. First, the number of distinct points
on the landscape can be estimated as:

~(¥)n()

where N is the number of atoms in the unit cell of volume V,§ is a relevant
discretization parameter (for instance, 1 A) and n; is the number of atoms of i-th
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Figure 3 Boron: (a) its schematic phase diagram (from
[13]) and distribution of electrons corresponding (b) bottom
and (c) top of the valence band in y-Bag [15].

type in the unit cell. C is astronomically large (roughly, ~ 10" if one uses § = 1A
and typical atomic volume of 10 A”).

It is useful to consider the dimensionality of the energy landscape:

d=3N+3 (2)

where 3N-3 degrees of freedom are the atomic positions, and the remaining six
dimensions are lattice parameters. For a system with 100 atoms in the unit cell,
the landscape is 303-dimensional!
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Equation (1) implies that the difficulty of crystal structure prediction increases
exponentially with system size (or landscape dimensionality) and it thus poses
an NP-hard problem (which is a shorthand of “‘non-deterministic polynomial-time
hard”, meaning that the scaling of the problem with the system size is faster
than any polynomial). Such high-dimensional problems with astronomically large
numbers of possible solutions imply that simple exhaustive search strategies are
unfeasible.

Great simplification of the problem can be achieved if structures are relaxed, i.e.
brought to the nearest local energy minima. During relaxation, certain correlations
between atomic positions set in — interatomic distances adjust to reasonable
values, and unfavorable interactions are avoided. The intrinsic dimensionality is
thus equal to a reduced value:

d*=3N+3—« (3)

where « is the (non-integer) number of correlated dimensions. Just doing
relaxation, great simplifications of the global optimization problem can be achieved
— for example, the dimensionality drops from 99 to 11.6 for Mg,,O (a really
simple system), while the decrease is less substantial for chemically complex
systems — from 39 to 32.5 for Mg,N4H;. To appreciate this simplification of the
problem, we remind that the number of local minima depends exponentially on
the intrinsic dimensionality:

C* = exp(Bd") (4)

This implies that any efficient search method must include structure relaxation
(i.e. local optimization). Even simple random sampling, when combined with local
optimization, can deliver correct solutions — although only for very small systems,
roughly N < 8-10 ([17, 18], see chapter by Tipton and Hennig [19] in this volume).
Much larger systems can be treated by more advanced methods, such as simulated
annealing ([20, 21], see chapter by Schon and Jansen [22]), metadynamics ([23,
24], see chapter by Martonak [25]), basin hopping ([26], see chapter by Wales
in this volume [27]), minima hopping ([28], see chapter by Goedecker [29]), or
evolutionary algorithms ([5, 30, 31], see chapter by Lyakhov et al. [32]). Many of
the above methods rely on the fact that in usual chemical systems good (i.e. low
energy) structures share some similarities, i.e. are located relatively close to each
other on the landscape, forming the so-called energy funnels, low-energy regions
of configuration space. This gives the landscape a benign overall shape — such
as the one shown in Figure 5. Exploiting the fact (assumed for a long time by
chemists, but now proven on real systems — see, e.g. [16]) that in real chemical
systems there are only a few (or just one) energy funnels, allows further gains of
efficiency of structure predictions. Nowadays, systems with a few hundred degrees
of freedom can be treated by some of these methods — perfectly adequate for most
inorganic and organic systems. Extending this limit to much larger systems may
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Figure 4 hP4 phase of sodium: (a) crystal structure, (b)

band gap computed in the GW approximation, and opti-

cal photographs of a sodium sample at (c) 110GPa (where

sodium is a white reflecting metal) and (d) at 199 GPa

(where it is a red transparent insulator). After [14].

(b)

Order parameter (s)

Figure 5 Energy landscape: (a) schematic illustration
showing the full landscape (solid line) and reduced land-
scape (dashed line interpolating local minima points), (b)
2D-projection of the reduced landscape of AugPd; (done us-
ing the method presented in [16]) showing all low-energy
structures clustered in one region of configuration space.

enable us to treat biologically important systems and address such problems as
protein folding. There are already some steps in this direction (see, e.g. [29]).

Next level of complexity is to ask if we can predict not just the stable structure,
but also the whole set of stable chemical compositions (and the corresponding
structures) in multicomponent system. This means that we are dealing with a
complex landscape consisting of compositional and structural coordinates, and
instead of a single ground state we should have a set of ground states located on
the so-called convex hull (Figure 6). There are some encouraging steps in solving
this problem [33-35].

We can also consider landscapes of properties other than the (free) energy. In this
case, hybrid optimization needs to be performed — combining local optimization
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corresponding structures in a binary is amazing that such a simple system gives

Lennard-Jones system with variable compo-  such a wealth of complex ground states.
sition. Solid circles denote ground states,

with respect to the energy (to find possible (quasi)equilibrium states) and global
optimization with respect to the property of interest. This allows us to find structures
(and compositions), corresponding to the desired values of the physical property of
interest. Figure 7 gives an example of such optimization, utilizing the evolutionary
algorithm [5, 30, 31] to search for the hardest possible structure of SiO,.

This search employed the model of hardness [37] extended by Lyakhov and
Oganov [36, 38], who also questioned whether diamond is the hardest carbon
allotrope. The answer was that it indeed is (with the theoretical hardness of
89.4 GPa, within the error bars of to the experimental values [39]), but a number of
other allotropes come close to it — for instance, lonsdaleite (89.3 GPa), bct4-carbon
(theoretical hardness 84.2 GPa) and M-carbon (theoretical hardness of 83.4 GPa)
shown in Figure 1. Both M-carbon [40] and bct4-carbon [6] (and private communi-
cation from a talented young researcher X.-F. Zhou, August 2009) structures were
proposed as explanations for the experimentally observed new superhard allotrope

xvii



xviii

Introduction: Crystal Structure Prediction, a Formidable Problem

T T

o oot B8
g

<]
o

a o

Hardness, GPa
—
(9,1

B
%
2
s
o
"%u
un
o4
Un
5
GD
Q
=X
o
5
Bm
-}
=]
o

o &
o

800
Structure number

200 400 600

1000 1200 1400 1600 1800

Figure 7 Evolutionary search for the hardest structure of SiO,. From [36].

(“superhard graphite”) obtained by cold compression of graphite above 17 GPa [41].
Both structures are metastable and both match experimental observations almost
equally well, but nevertheless there is a way of deciding which one is more likely to
be the “superhard graphite” of Mao [41]. This brings us to the next major unsolved
problem — prediction of synthesizability of a metastable phase. Indeed, the structure
with optimal properties will frequently be metastable, and will be of interest only
if it can be synthesized. This requires that the activation barrier for its formation
from an available precursor (in this case, graphite) be lower than the barrier of
formation of any other structure. The best approach for computing the absolute
activation energies of solid-solid phase transitions is the transition path sampling

T T T T T T T T T T

—246.5

_247 bct4-carbon |

—247.5

Energy, Ha

—-248

3

(b)

Figure 8 Synethesizability of M-carbon vs bct4-carbon: (a)
energy profiles along the graphite-M-carbon (black) and
graphite-bct4 (red) transition pathways and (b) the transition
pathway graphite-M-carbon. The energies in given per super-
cell of 144 atoms. From [44]. Courtesy of S.E. Boulfelfel.
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method [42], reviewed in this volume by Leoni and Boulfelfel [43]. One of the main
advantages is that this method enables studies of nucleation and growth of the new
phase, and its absolute activation barriers are meaningful (unlike those obtained
by most other methods). As shown in Figure 8, the lower computed energy barrier
clearly favors M-carbon over bct4-carbon [44].

It is my hope that this volume, reviewing most of the major methods of crystal
structure prediction, all the way from topological approaches [4] to optimization
methods [19, 22, 25, 27, 29, 32] and methods to appraise synthesizability of a
material [43], will be useful to a wide readership of physicists, chemists, materials
scientists and earth scientists. This volume also presents, in the Appendix, the first
attempt to systematically compare different optimization strategies for a set of very
challenging inorganic structure prediction problems [45]. The methods described
in this volume should motivate further research into the structure and properties
of materials, and will (probably quite soon) widely enable computational design of
new functional materials. We are witnessing the dawn of a new era, where crystal
structure prediction will no longer be an intractable problem.

I am grateful to Salah Eddine Boulfelfel, Andriy O. Lyakhov, Mario Valle,
Feiwu Zhang, and Qiang Zhu, as well as former postdoc Yanming Ma and
graduate student Colin W. Glass. I would also like to thank Wiley-VCH and its
editors, in particular Anja Tschoertner, for their professionalism in preparing this
book for publication. This work is supported by grants from Intel Corporation,
Rosnauka (Russia, Contract No. 02.740.11.5102), Research Foundation of Stony
Brook University, the National Natural Science Foundation of China (grant No.
10910263), and DARPA (grant #54751). Finally, I would like to express my gratitude
to all the authors of this volume — it has been enormous pleasure to organize this
book and edit it.
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