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Foreword

The author’s intention was:

e to select and expose subjects that can be necessary or useful to those in-
terested in stochastic calculus and pricing in models of financial markets
operating under uncertainty;

e to introduce the reader to the main concepts, notions, and results of stochas-
tic financial mathematics;

e to develop applications of these results to various kinds of calculations re-
quired in financial engineering.

The author considered it also a major priority to answer the requests of teachers
of financial mathematics and engineering by making a bias towards probabilistic and
statistical ideas and the methods of stochastic calculus in the analysis of market
risks.

The subtitle “Facts, Models, Theory” appears to be an adequate reflection of
the text structure and the author’s style, which is in large measure a result of the
‘feedback’ with students attending his lectures (in Moscow, Ziirich, Aarhus, ...).

For instance, an audience of mathematicians displayed always an interest not
only in the mathematical issues of the ‘Theory’, but also in the ‘Facts’, the par-
ticularities of real financial markets, and the ways in which they operate. This
has induced the author to devote the first chapter to the description of the key
objects and structures present on these markets, to explain there the goals of finan-
cial theory and engineering, and to discuss some issues pertaining to the history of
probabilistic and statistical ideas in the analysis of financial markets.

On the other hand, an audience acquainted with, say, securities markets and
securities trading showed considerable interest in various classes of stochastic pro-
cesses used (or considered as prospective) for the construction of models of the
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dynamics of financial indicators (prices, indexes, exchange rates, ...) and impor-
tant for calculations (of risks, hedging strategies, rational option prices, etc.).

This is what we describe in the second and the third chapters, devoted to sto-
chastic ‘Models’ both for discrete and continuous time.

The author believes that the discussion of stochastic processes in these chapters
will be useful to a broad range of readers, not only to the ones interested in financial
mathematics.

We emphasize here that in the discrete-time case, we usually start in our de-
scription of the evolution of stochastic sequences from their Doob decomposition
into predictable and martingale components. One often calls this the ‘rnartingale
approach’. Regarded from this standpoint, it is only natural that martingale theory
can provide financial mathematics and engineering with useful tools.

The concepts of ‘predictability’ and ‘martingality’ permeating our entire expo-
sition are incidentally very natural from economic standpoint. For instance, such
economic concepts as investment portfolio and hedging get simple mathematical def-
initions in terms of ‘predictability’, while the concepts of efficiency and absence of
arbitrage on a financial market can be expressed in the mathematical language, by
making references to martingales and martingale measures (the First fundamental
theorem of asset pricing theory; Chapter V, §2b).

Our approach to the description of stochastic sequences on the basis of the Doob
decomposition suggests that in the continuous-time case one could turn to the
.(fairly broad) class of semimartingales (Chapter III, § 5a). Representable as they
are by sums of processes of bounded variation (‘slowly changing’ components) and
local martingales (which can often be ‘fast changing’, as is a Brownian motion, for
example), semimartingales have a remarkable property: one can define stochastic
integrals with respect to these processes, which, in turn, opens up new vistas for the
application of stochastic calculus to the construction of models in which financial
indexes are simulated by such processes.

The fourth (‘statistical’) chapter must give the reader a notion of the statistical
‘raw material’ that one encounters in the empirical analysis of financial data.

Based mostly on currency cross rates (which are established on a global, prob-
ably the largest, financial market with daily turnover of several hundred billion
dollars) we show that the ‘returns’ (see (3) in Chapter II, § 1a) have distribution
densities with ‘heavy tails’ and strong ‘leptokurtosis’ around the mean value. As
regards their behavior in time, these values are featured by the ‘cluster property’
and ‘strong aftereffect’ (we can say that ‘prices keep memory of their past’). We
demonstrate the fractal structure of several characteristic of the volatility of the
‘returns’.

Of course, one must take all this into account if one undertakes a construction
of a model describing the actual dynamics of financial indexes; this is extremely
important if one is trying to foresee their development in the future.

“Theory’ in general and, in particular, arbitrage theory are placed in the fifth
chapter (discrete time) and the seventh chapter (continuous time).
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Central points there are the First and the Second fundamental asset pricing
theorems.

The First theorem states (more or less) that a financial market is arbitrage-free
if and only if there exists a so-called martingale (risk-neutral) probability measure
such that the {(discounted) prices make up a martingale with respect to it. The
Second theorem describes arbitrage-free markets with property of completeness,
which ensures that one can build an investment portfolio of value replicating
faithfully any given pay-off.

Both theorems deserve the name fundamental for they assign a precise mathe-
matical meaning to the economic notion of an ‘arbitrage-free’ market on the basis
of (well-developed) martingale theory.

In the sizth and the eighth chapters we discuss pricing based on the First and the
Second fundamental theorems. Here we follow the tradition in that we pay much
attention to the calculation of rational prices and hedging strategies for various
kinds of (European or American) options, which are derivative financial instru-
ments with best developed pricing theory. Options provide a perfect basis for the
understanding of the general principles and methods of pricing on arbitrage-free
markets.

Of course, the author faced the problem of the choice of ‘authoritative’ data and
the mode of presentation.

The above description of the contents of the eight chapters can give one a mea-
sure for gauging the spectrum of selected material. However, for all its bulkiness,
our book leaves aside many aspects of financial theory and its applications (e.g., the
classical theories of von Neumann—-Morgenstern and Arrow-Debreu and their up-
dated versions considering investors’ behavior delivering the maximum of the ‘utility
function’, and also computational issues that are important for applications).

As the reader will see, the author often takes a lecturer’s stance by making
comments of the ‘what-where-when’ kind. For discrete time we provide the proofs
of essentially all main results. On the other hand, in the continuous-time case
we often content ourselves with the statements of results (of martingale theory,
stochastic caleulus, etc.) and refer to a suitable source where the reader can find
the proofs.

The suggestion that the author could write a book on financial mathematics for
World Scientific was put forward by Prof. Ole Barndorfl-Nielsen at the beginning
of 1995. Although having accepted it, it was not before summer that the author
could start drafting the text. At first, he had in mind to discuss only the discrete-
time case. However, as the work was moving on, the author was gradually coming
to the belief that he could not give the reader a full picture of financial mathematics
and engineering without touching upon the continuous-time case. As a result, we
discuss both cases, discrete and continuous.

This book consists of two parts. The first (‘Facts. Models’) contains Chap-
ters I-IV. The second (‘Theory’) includes Chapters V-VIIL
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The writing process took around two years. Several months went into
typesetting, editing, and preparing a camera-ready copy. This job was done by
I. L. Legostaeva, T. B. Tolozova, and A. D. Izaak on the basis of the Information
and Publishing Sector of the Department of Mathematics of the Russian Academy
of Sciences. The author is particularly indebted to them all for their expertise and
selfless support as well as for the patience and tolerance they demonstrated each
time the author came to them with yet another ‘final’ version, making changes in
the already typeset and edited text.

The author acknowledges the help of his friends and colleagues, in Russia and
abroad; he is also grateful to the Actuarial and Financial Center in Moscow,
VW-Stiftung in Germany, the Mathematical Research Center and the Center for
Analytic Finance in Aarhus (Denmark), INTAS, and the A. Lyapunov Institute in
Paris and Moscow for their support and hospitality.

Moscow A. Shiryaev
1995 - 1997 Steklov Mathematical Institute
Russian Academy of Sciences
and

Moscow State University
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