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This book provides a self-contained introduction to cellular automata and lattice
Boltzmann techniques.

Beginning with a chapter introducing the basic concepts of this developing
field, a second chapter describes methods used in cellular automata modeling.
Following chapters discuss the statistical mechanics of lattice gases, diffusion
phenomena, reaction-diffusion processes and nonequilibrium phase transitions. A
final chapter looks at other models and applications, such as wave propagation
and multiparticle fluids. With a pedagogic approach, the volume focuses on the
use of cellular automata in the framework of equilibrium and nonequilibrium
statistical physics. It also emphasizes application-oriented problems such as
fluid dynamics and pattern formation. The book contains many examples and
problems. A glossary and a detailed list of references are also included.

This will be a valuable book for graduate students and researchers working in
statistical physics, solid state physics, chemical physics and computer science.
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Preface

The cellular automata approach and the related modeling techniques are
powerful methods to describe, understand and simulate the behavior of
complex systems. The aim of this book is to provide a pedagogical
and self-contained introduction to this field and also to introduce recent
developments. Our main goal is to present the fundamental theoretical
concepts necessary for a researcher to address advanced applications in
physics and other scientific areas.

In particular, this book discusses the use of cellular automata in the
framework of equilibrium and nonequilibrium statistical physics and in
application-oriented problems. The basic ideas and concepts are illustrated
on simple examples so as to highlight the method. A selected bibliog-

raphy is provided in order to guide the reader through this expanding
field.

Several relevant domains of application have been mentioned only
through references to the bibliography, or are treated superficially. This
is not because we feel these topics are less important but, rather, because
a somewhat subjective selection was necessary according to the scope
of the book. Nevertheless, we think that the topics we have covered
are significant enough to give a fair idea of how the cellular automata
technique may be applied to other systems.

This book is written for researchers and students working in statistical
physics, solid state physics, chemical physics and computer science, and
anyone interested in modeling complex systems. A glossary is included
to give a definition of several technical terms that are frequently used
throughout the text. At the end of the first six chapters, a selection
of problems is given. These problems will help the reader to become
familiar with the concepts introduced in the corresponding chapter, or will
introduce him to new topics that have not been covered in the text. Some
problems are rather easy, although they usually require some programming
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Xii Preface

effort, but other problems are more involved and will demand significant
time to complete.

Most of the cellular automata simulations and results presented in this
book have been produced on the 8k Connection Machine CM-200 of
the University of Geneva. Others have been computed on an IBM SP2
parallel computer, also installed at the University of Geneva. Although
a parallel supercomputer is quite useful when considering large scale
simulations, common workstations and even modern personal computers
are well adapted to perform cellular automata computations, except for
on-line display which is alway very desirable. Dedicated hardware is also
available but, usually, less flexible than a general purpose machine.

Despite our effort, several errors and misprints are still likely to be
present. Please report them to us” (as well as any comment or suggestion).

We would like to thank all the people who have made this book
possible and, in particular Claude Godreche who gave us the opportunity
to write it. Special thanks go to Pascal Luthi and Alexandre Masselot
who made several original and important simulations which are presented
in this book. Other people have played a direct or indirect role in
the preparation of the manuscript. Among them, we thank Rodolphe
Chatagny, Stephen Cornell, Laurent Frachebourg, Alan McKane, Zoltan
Racz and Pierre-Antoine Rey.

Finally we acknowledge the Swiss National Science Foundation who
funded some of the research reported here and the Computer Science
Department and the Theoretical Physics Department of the University of
Geneva for making available the necessary environment and infrastructure
for this enterprise.

" Bastien.Chopard@cui.unige.ch or Michel.Droz@physics.unige.ch
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Introduction

1.1 Brief history

Cellular automata (often termed CA) are an idealization of a physical
system in which space and time are discrete, and the physical quantities
take only a finite set of values.

Although cellular automata have been reinvented several times (of-
ten under different names), the concept of a cellular automaton dates
back from the late 1940s. During the following fifty years of exis-
tence, cellular automata have been developed and used in many different
fields. A vast body of literature is related to these topics. Many con-
ference proceedings [1-8]), special journal issues [9,10] and articles are
available.

In this section, our purpose is not to present a detailed history of the
developments of the cellular automati approach but, rather, to emphasize
some of the important steps.

1.1.1  Self-reproducing systems

The reasons that have led to the elaboration of cellular automata are
very ambitious and still very present. The pioneer is certainly John von
Neumann who, at the end of the 1940s, was involved in the design of
the first digital computers. Although von Neumann’s name is definitely
associated with the architecture of today’s sequential computers, his con-
cept of cellular automata constitutes also the first applicable model of
massively parallel computation.

Von Neumann was thinking of imitating the behavior of a human brain
in order to build a machine able to solve very complex problems. However,
his motivation was more ambitious than just a performance increase of
the computers of that time. He thought that a machine with such a
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2 1 Introduction

complexity as the brain should also contain self-control and self-repair
mechanisms. His idea was to get rid of the difference which exists between
processors and the data, by considering them on the same footing. This
led him to envisage a machine capable of building itself, out of some
available material.

Rapidly, he considered the problem from a more formal viewpoint and
tried to define the properties a system should have to be self-replicating. He
was mostly interested to find a logical abstraction of the self-reproduction
mechanism, without reference to the biological processes involved.

Following the suggestions of S. Ulam [11], von Neumann addressed this
question in the framework of a fully discrete universe made up of cells.
Each cell is characterized by an internal state, which typically consists of
a finite number of information bits. Von Neumann suggested that this
system of cells evolves, in discrete time steps, like simple automata which
only know of a simple recipe to compute their new internal state. The rule
determining the evolution of this system is the same for all cells and is a
function of the states of the neighbor cells. Similarly to what happens in
any biological system, the activity of the cells takes place simultaneously.
However, the same clock drives the evolution of each cell and the updating
of the internal state of each cell occurs synchronously. These fully discrete
dynamical systems (cellular space) invented by von Neumann are now
referred to as cellular automata.

The first self-replicating cellular automaton proposed by von Neumann
was composed of a two-dimensional square lattice and the self-reproducing
structure was made up of several thousand elementary cells. Each of these
cells had up to 29 possible states [12]. The evolution rule required the
state of each cell plus its four nearest neighbors, located north, south, west
and east. Due to its complexity, the von Neumann rule has only been
partially implemented on a computer [13].

However, von Neumann had succeeded in finding a discrete structure of
cells bearing in themselves the recipe to generate new identical individuals.
Although this result is hardly even a very primitive form of life, it is
quite interesting because it is usually expected that a machine can only
build an object of lesser complexity than itself. With self-replicating
cellular automata, one obtains a “machine” able to create new machines
of identical complexity and capabilities.

The von Neumann rule has the so-called property of universal com-
putation. This means that there exists an initial configuration of the
cellular automaton which leads to the solution of any computer al-
gorithm. This sounds a surprising statement: how will such a discrete
dynamics help us to solve any problem? It turns out that this property
is of theoretical rather than practical interest. Indeed, the property of
universal computing means that any computer circuit (logical gates) can
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be simulated by the rule of the automaton. All this shows that quite
complex and unexpected behavior can emerge from a cellular automaton
rule.

After the work of von Neumann, others have followed the same
line of research and the problem is still of interest [14]. In particular,
E.F. Codd [15] in 1968 and much later C.G. Langton [16] and Byl [17]
proposed much simpler cellular automata rules capable of self-replicating
and using only eight states. This simplification was made possible by giv-
ing up the property of computational universality, while still conserving
the idea of having a spatially distributed sequence of instructions (a kind
of cellular DNA) which is executed to create a new structure and then
entirely copied in this new structure.

More generally, artificial life is currently a domain which is intensively
studied. Its purpose is to better understand real life and the behavior of
living species through computer models. Cellular automata have been an
early attempt in this direction and can certainly be further exploited to
progress in this field [18,19].

1.1.2  Simple dynamical systems

In a related framework, it is interesting to remember that it is precisely a
simple ecological model that has brought the concept of cellular automata
to the attention of wide audience. In 1970, the mathematician John
Conway proposed his now famous game of life [20]. His motivation was
to find a simple rule leading to complex behaviors. He imagined a two-
dimensional square lattice, like a checkerboard, in which each cell can be
either alive (state one) or dead (state zero). The updating rule of the game
of life is as follows: a dead cell surrounded by exactly three living cells
comes back to life. On the other hand, a living cell surrounded by less than
two or more than three neighbors dies of isolation or overcrowdness. Here,
the surrounding cells correspond to the neighborhood composed of the
four nearest cells (north, south, east and west) plus the four second nearest
neighbors, along the diagonals. Figure 1.1 shows three configurations of
the game of life automaton, separated by 10 iterations.

It turned out that the game of life automaton has an unexpectedly
rich behavior. Complex structures emerge out of a primitive “soup” and
evolve so as to develop some skills. For instance, objects called gliders
may form (see problems, section 1.4). Gliders correspond to a particular
arrangement of adjacent cells that has the property to move across space,
along straight trajectories. Many more such structures have been identified
in the vast body of literature devoted to the game of life [21,22]. As for
the von Neumann rule, the game of life is a cellular automata capable of
computational universality.
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Fig. 1.1. The game of life automaton. Black dots represents living cells whereas
dead cells are white. The figure shows the evolution of some random initial
configurations.

In addition to these theoretical aspects, cellular automata were used in
the 1950s for image processing [23]. It was recognized early on that much
tedious picture analysis could be carried out automatically, according to a
cellular automata computing model: the pixels of an image can be treated
simultaneously, using simple local operations. Special-purpose machines
based on cellular automata logic have been developed for noise reduction,
counting and size estimation in images obtained from observations with
a microscope.

At the beginning of the 1980s, S. Wolfram studied in detail a family of
simple one-dimensional cellular automata rules (the now famous Wolfram
rules [24,25]). He had noticed that a cellular automaton is a discrete dy-
namical system and, as such, exhibits many of the behaviors encountered
in a continuous system, yet in a much simpler framework. A concept such
as complexity could be investigated on mathematical models allowing an
exact numerical computer calculation, because of their Boolean nature (no
numerical errors nor truncation as in more traditional models). Wolfram’s
results have contributed to prove that cellular automata are important
objects to consider for statistical mechanics studies and, at the present
time, Wolfram’s rule are still the topic of much research.

1.1.3 A synthetic universe

The property of many cellular automata rules being a universal computer
made several authors think that the physical world itself could be a
very large cellular automaton. Tommaso Toffoli [26] compares cellular
automata to a synthetic model of the universe in which the physical laws
are expressed in terms of simple local rules on a discrete space—time
structure.



