Materials
Characterization

Modern Methods and Applications

edited by Narayanaswami Ranganathan



Materials
Characterization

Modern Methods and Applications

edited by
Narayanaswami Ranganathan

lﬁ}ii)\ J‘tJ ﬂ"r :

J‘f& :1'3 i

PAN STANFORD PUBLISHING



Published by

Pan Stanford Publishing Pte. Ltd.
Penthouse Level, Suntec Tower 3
8 Temasek Boulevard

Singapore 038988

Email: editorial@panstanford.com
Web: www.panstanford.com

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Materials Characterization: Modern Methods and Applications
Copyright (© 2015 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any
form or by any means, electronic or mechanical, including photocopying,
recording or any information storage and retrieval system now known or to
be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying
fee through the Copyright Clearance Center, Inc,, 222 Rosewood Drive,
Danvers, MA 01923, USA. In this case permission to photocopy is not
required from the publisher.

ISBN 978-981-4613-06-4 (Hardcover)
ISBN 978-981-4613-07-1 (eBook)

Printed in the USA



Materials
Characterization



P EE, 75 Z 58 2EPDFIE 1 1) : www. ertongbook. com



Preface

Modern materials are put to use in harsh environments and
high temperatures, and the determination of material properties
has become a key issue. The material mechanical properties are
governed by the microstructure and other physical properties.
Depending on the kind of application, one is interested in local
mechanical properties, typically at the surface or in the layers
immediately underneath, while other applications require the
knowledge of the global or bulk behavior.

This book, which is a result of a coordinated effort by researchers
from five different countries, addresses the methods of determining
local and global mechanical properties of a variety of materials:
metals, plastics, rubber, and ceramics.

Chapter 1 is a comprehensive treatment of the nanoindenta-
tion technique, treating the basic principles, contact mechanics,
and various examples of surface properties determination. While
conventional properties like the hardness and the reduced modulus
are discussed, more delicate tests such as nanowear, nanoimpact,
and micropillar compression tests are also treated in detail, with
different relevant applications.

Chapter 2 treats surface property changes in selected polymers
and rubbers, measured by nanoindentation. Different aspects such
as surface gradient of vulcanizate crosslinking, surface migration
of low molecular weight components of rubber, and surface
segregation in polymer blends are discussed.

Chapter 3 treats the static and wear resistance of dental
composites with emphasis on new composites with enhanced
behavior like improving the mechanical properties of fillings,
resulting in longer lifetime, and by providing bactericidal function
to composites.
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Chapter 4 treats the global and local properties of a lead free
solder. It is shown that the local properties, such as hardness,
modulus, and creep are affected by the presence of a specific
microstructure in the solder ball and the existence of local
precipitates. The local properties can be quite different from bulk
properties. The cyclic fatigue behavior of the bulk alloy is studied in
detail.

Chapter 5 discusses the change in surface properties in the
plastic zone accompanying a growing fatigue crack. It is shown that
the plasticity index is very sensitive to local plasticity and the local
changes indicate that ductility exhaustion is a precursor to fatigue
crack propagation.

Chapter 6 discusses in detail the fatigue behavior of a poly-
chloroprene rubber. Fatigue behavior is studied at different load
ratios and strong indication of strain induced crystallization is
observed, leading to life enhancement at high load ratios. A detailed
fractographic examination is presented to illustrate the mechanisms.

Chapter 7 is a comprehensive review of the methods of
determining fatigue crack growth resistance of metallic materials,
including instrumented testing methods, spectrum fatigue testing,
and standards for testing and analysis.

Chapter 8 treats friction and wear tests and gives a global
and structured vision of the tribological tests existing from the
classifications of tests according to the needs of the industry.

The final chapter presents a means of determining elastic prop-
erties by the nondestructive resonant vibrating method, developed
for bulk and coated materials characterization.

It has been a pleasure realizing this collection, which will be very
useful to research scholars, graduate students, and teachers.

The editor is grateful to all the 22 contributors to this book and
to Pan Stanford Publishing for their help with the different processes
of proofreading and editing.

N. Ranganathan
Tours, France
August 18, 2015
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Chapter 1

Advanced Nanomechanical Test
Techniques
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1.1 Introduction

For many years the hardness of bulk materials and thick coatings
has been determined by optical analysis of indentation marks. The
development of thin coatings deposited by techniques such as phys-
ical vapor deposition (PVD) and chemical vapor deposition (CVD),
to improve wear resistance, led to the requirement to measure their
properties at a smaller scale. Initially such coatings were typically
relatively thick (e.g, ~10 pm) and microhardness measurements
could be performed to determine their hardness. However, as the
thickness of the films reduced the reliable determination of their
hardness by conventional optical means became impossible. Depth-
sensing indentation (DSI) instruments have been developed to

Materials Characterization: Modern Methods and Applications
Edited by Narayanaswami Ranganathan

Copyright (© 2015 Pan Stanford Publishing Pte. Ltd.

ISBN 978-981-4613-06-4 (Hardcover), 978-981-4613-07-1 (eBook)
www.panstanford.com



2 | Advanced Nanomechanical Test Techniques

address this need and have become increasingly popular. The test
technique is also called instrumented indentation testing (IIT) or
nanoindentation and has progressed sufficiently for standardization
to be required with the first international standard for DSI
being released in 2002 and is currently in revision [1]. Provided
instruments are well calibrated the data from nanoindentation
tests are routinely analyzed by well-established contact mechanics
treatments to provide the reduced elastic modulus and the hardness
(or more strictly the mean contact pressure) of the test sample
[2-3]. Conversion between nanoindentation hardness and Vickers
hardness requires a little care. In addition to knowledge of the
indenter geometry the actual contact areas used in the two
definitions of hardness are slightly different necessitating the need
for a geometric correction factor.

Over the last 25 years commercial nanoindentation test instru-
ments (also called nanoindenters) have improved their resolution,
their calibrations, and their ability to very precisely position
where the indentations are made to obtain highly localized and
accurate mechanical property information. Additionally, they have
expanded the range of test techniques beyond simple nanoinden-
tation, with several including some capability for nanotribological
measurements (e.g, nanoscratch and nanowear testing), which
has consequently greatly expanded their range of applications.
There is a range of commercial nanoindenter designs, including
electrostatic or capacitive actuation, and vertical or horizontal
loading configurations. The design of one popular commercial test
instrument, the NanoTest system from Micro Materials, combines
electrostatic actuation with horizontal loading and an open test
platform that has enabled its further development into a true
multifunctional nanomechanical/nanotribological test instrument
where tests can be performed with a range of contact geometries
(Fig. 1.1) and environmental conditions (Fig. 1.2 illustrates the
temperature and strain rate test envelope) [4]. The various tests
provide complementary information and the data obtained can
often more usefully map onto the actual conditions that the
materials experience in use. It is becoming possible to move beyond
basic characterization to the development of increasingly accurate
prediction of the surface behavior.



