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Preface

Modeling and prediction of the nanocomposite properties is generally achieved
using different finite element, statistical and micromechanical models. These
models help in predicting the properties of the nanomaterials, thus eliminating
the need for synthesizing each and every composite first to ascertain its properties.
A number of precautions are, however, necessary in order to avoid discrepancies
in the model outcome, for example, the model used should not have unrealistic
assumptions and the experimental results should be in plenty in order to have an
accurate model. The validation of the model should also be achieved by a compari-
son of the predicted values with the experimental values. The chapters contained
in the book present examples of modeling and prediction of polymer clay nano-
composite properties using various types of theoretical methods.

Chapter 1 comments on the convergence of the experimental and theoretical
studies and reviews briefly the various kinds of melds used for the prediction of
nanocomposite properties. Chapter 2 reviews the application of Self-Consistent
Field Theory (SCFT) to prediction of polymer-clay nanocomposite morphology.
Over the past decade, SCFT has been shown to qualitatively describe the factors
influencing the polymer ability to intercalate or exfoliate the clay platelets. In
Chapter 3, the experimental analysis of particulate-filled nanocomposites
butadiene-styrene rubber/fullerene-containing mineral (nanoshungite) is ana-
lyzed with the aid of force-atomic microscopy, nanoindentation methods, and
computer treatment. The theoretical analysis is carried out within the frameworks
of fractal analysis. Chapter 4 presents a reptation-based model that incorporates
polymer-particle interactions and confinement to describe the dynamics and rheo-
logical behaviors of linear entangled polymers filled with isotropic nanoscale par-
ticles. In Chapter 5, a hierarchical procedure for bridging the gap between atomistic
and macroscopic modeling via mesoscopic simulations is presented. The concept
of multiscale modeling is outlined, and relevant examples of applications of single
scale and multiscale procedures for nanostructured systems of industrial interest
are illustrated. The behavior of polymer-layered silicate nanocomposites is modeled
in Chapter 6 through various factorial and mixtures design methodologies in order
to optimize the composite performance and to accurately predict the properties
especially for the non-polar polymer systems. Chapter 7 introduces a hierarchical
multiscale and stochastic Finite Element Method (MSFEM) to model the spatial
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randomness induced in polymers by the non-uniform distribution of nanophases
including primarily single walled carbon nanotubes (SWCNT). In Chapter 8, a
general effective medium model derived from “grain averaging theory”—in
analogy to quantum scattering theory—is reviewed in which anisotropicity of the
second phase (filler from hereafter) can be included. Chapter 9 presents a new
technique that takes into account the curvature that the nanotubes show when
immersed in the polymer, and is based on a numerical-analytical approach that
has significant advances over micromechanical modeling and can be applied to
several kinds of nanostructured composites. In Chapter 10, details of the coarse
grain scheme from molecular dynamics (MD) to dissipative particle dynamics
(DPD) modeling are discussed. Two polymer nanocomposite case studies—PE/
PLLA (polyethylene/poly lactic acid) and PE/PLLA/CNT—are provided to demon-
strate how multiscale simulation can describe the effects of volume fraction and
mixing method on the structure. Chapter 11 presents a product design approach
and strategy to design wheat straw polypropylene composites (WSPPC). In this
approach, a product design problem is connected to and simultaneously solved
with process-product problem to create new products that satisfy the market needs.
In Chapter 12, a kinetic model is used to predict the reaction rate and the degree
of cure as a function of time and temperature; whereas a rheological model describes
viscosity as a function of time and temperature. Since viscosity is also dependent
on the degree of cure, the rheological model combined with the kinetic model
forms a chemorheological model.

I am indebted to Wiley-VCH for publication of the book. I am thankful to my
family, especially to my wife Preeti for her continuous support during the prepara-
tion of the manuscript.

Vikas MITTAL
Abu Dhabi
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