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Preface

This book is concerned with the exposition of microcontinuum field theories
(micropolar, microstretch, and micromorphic, briefly, 3M continua) for flu-
ent media. These are structured fluid media as exemplified by anisotropic
fluids, liquid crystals, polymeric melts, suspensions, slurries, biological flu-
ids, dusty gases, etc. It is assumed that the media under consideration can
be modeled by continuum theories. Thus, the discrete nature of the fluent
substances is taken into account by only their continuum substructures as
described in Volume I of these treatises.

The foundation of these theories is established fully in Volume I. How-
ever, for the sake of easy reference, basic equations are developed for each
chapter. Nevertheless, the reader is encouraged to study the first three
chapters of Volume I.

Microcontinuum field theories constitute extensions of classical field
theories (elasticity, fluid dynamics, and electromagnetism) in that, against
the classical notions, here each material point of continuum carries direc-
tors that may be deformable. In micropolar media, directors are considered
rigid. In microstretch media they can stretch and contract; and in micro-
morphic media, they are deformable. The presence of directors brings three
extra degrees of freedom, over classical fluids, in micropolar continuum: four
extra degrees of freedom in microstretch continuum; and nine extra degrees
of freedom in micromorphic media.

Microcontinuum field theories make it possible to discuss many different
physical properties of substances that fall outside the coverage of the clas-
sical field theories. For example, liquid crystals that fall outside the scope
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of the Navier—Stokes fluids, now find natural mechanisms within the theory
of micropolar continua.
This book consists of four parts:

1. Theory of micropolar fluids (Chapters 9-11).
2. Liquid crystals (Chapters 12-14).

3. Microstretch fluids (Chapters 15 and 16).

4. Micromorphic fluids (Chapter 17).

Chapters 9-16 include the discussion of electromagnetic interactions as well.

The main purpose of this volume is the establishment of the fundamental
equations of 3M continuum theories. Ample examples of solutions are pro-
vided for the demonstration of the predictions of these theories. However.
attention is focused on the new and significant physical phenomena pre-
dicted by these theories over the classical fluid mechanics. Consequently.
number of problems selected are limited.

Excluding the solutions of some problems treated in Chapter 9, the
present volume is based entirely on the author’s work over several decades.
Historically, the first paper that originated in this field is that of the au-
thor, Eringen [1964]. Since then, the literature has become so large that the
coverage of this book had to be curtailed. I have, therefore, placed more
weight on the foundations, which are crucial to future research. Moreover.
much of the contents of Chapters 10 through 17 did not appear in the
publications prior to this book.

It is pleasing to observe the harmony in the fundamental equations devel-
oped, and comforting to see that predictions of the theories are reasonably
in accord with existing experimental observations. Nevertheless, treading
on new ground, one must be cautious. On this, I ask the readers’ indulgence
and understanding.

It is my hope that much of the theories presented in this book will provide
a basis for the resolution of some outstanding problems (e.g. suspensions.
turbulence) and give impetus for research in new directions. Of course, the
final verdict for this remains with future generations.

A. Cemal Eringen
Littleton, Colorado
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9

Micropolar Fluid Dynamics?

9.0 Scope

Micropolar fluid dynamics is concerned with the motion of fluids whose
material points possess orientations. It is distinguished from classical fluid
dynamics (which is also known as Newtonian fluid dynamics or the Navier—
Stokes (N—8) theory) in that classical fluid dynamics is assumed not to
possess oriented material points. Thus, against the three translational de-
grees of freedom of the classical theory, micropolar fluids possess six degrees
of freedom: three translational degrees and three rotational degrees. The
rotational degrees of freedom bring into play nonsymmetric stress tensors
and couple stresses, which are missing from the classical theory.

In Section 9.1, I introduce the basic notions of material particles which
possess inner structures represented by deformable directors. The motions
are defined. The places of micropolar and classical fluid dynamics are
sketched in the hierarchy of micromorphic fluids whose material points
are endowed with deformable directors. Section 9.2 summarizes the strain
and rotation measures, the deformation tensors, the axiom of objectivity,
compatibility conditions for micromorphic, microstretch, and micropolar
continua, which I also call 3M continua. An account on the subject was
more thoroughly discussed in Volume I. The balance laws of micropolar
continua are copied from Section 2.2 into Section 9.3.

IThe theory of micropolar fluid dynamics was introduced by Eringen [1966]. It is the
special case of micromorphic theory of Eringen [1964].
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Constitutive equations are given in Section 9.4, where I also discuss the
thermodynamics stability, which places restrictions on the micropolar vis-
cosities. Section 9.5 presents the field equations’ boundary and initial con-
ditions. The theory of micropolar fluids is now ready for applications.

Section 9.6 shows how one may obtain classical theory from the prescnt
theory. It gives a norm for the velocity field of micropolar theory to converge
to the velocity field of the (N-S) theory.

The solution of a pipe flow is presented in Section 9.7, where we see the
emergence of internal characteristic lengths that are missing from the N S
theory.

Similarity parameters of micropolar theory are many, as shown in Sec-
tion 9.8.

Micropolar theory naturally gives rise to the notion of vortices as a fun-
damental concept. Section 9.9 discusses the change of shape and decay of
vortices in space and time.

In Section 9.10, we describe how the turbulence can be discussed with
the mechanisms of micropolar fluid dynamics. To this end, the Reynolds
stresses are calculated and turbulence energy is given for spherically syni-
metric motions. Microrotations induced by sudden disturbance is elabo-
rated. Kampé de Fériet and Taylor-type solutions are presented in Sec-
tion 9.11.

In Section 9.12, we present the solution of the flow problem in a rheomec-
ter, where two parallel plates of the rheometer containing micropolar fluid
are rotating about two noncoincident axes. Section 9.13 presents a theory
of lubrication.

In Section 9.14 are obtained fundamental solutions for slow motions.
These are the solutions due to prescribed body forces and couples in fluids.
The Stokes flow is obtained. The following section (Section 9.15) presents
the Stokes flow about a sphere, indicating that the drag on a sphere is
reduced as compared to N-S fluids.

Stagnation flow is discussed in Section 9.16.

The thermal instability of a layer of fluid heated from below or above
(the so-called classical problem of Benard) is the subject of Section 9.17.

Boundary layer flow (classically known as Blasius flow) is presented in
Section 9.18, where the boundary layers and sublayers are discussed. In
Section 9.19, the problem of mixed convection in a vertical flow (relevant
to nuclear reactors and heat exchangers) is solved. Section 9.20 discusscs
invariant solutions of plane micropolar fluids. The method presented here
allows us to obtain an infinite number of time-independent solutions from
any steady-state solution.

Micropolar fluid dynamics is still in the fast development state. It pos-
sesses the basic mechanisms relevant to turbulence, suspensions, and is the
key to many other physical phenomena (e.g., liquid crystals, anisotropic
fluids, see Chapters 11 and 12). Once these aspects become widely known.
perhaps the theory will open other dimensions of research in the future.
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FIGURE 9.1.1. Deformable directors.

9.1 Motion, Micromotion

As discussed in Section 1.2, in microfluids, the material points of the fluid
are considered to be small deformable particles. The motion and micromo-
tion of the material particles are expressed by

1'A¢=;i'k(x,t). k:17233
= XkK(X,t)EKy K =123,

where summation over repeated indices is understood throughout.

Here (9.1.1) maps the center of mass of the particle X in the body at
the reference frame K¢, at time t = 0, to a spatial place x at time ¢ (Fig-
ure 9.1.1). This represents the macromotion (or simply the motion). The
mapping (9.1.2) is the expression of the micromotion, which is equivalent
to the rotation and the microdeformations of a particle. Since the material
particles are considered to be geometrical points with mass and inertia,
ki (X, t) here represents the three deformable directors attached to the
material particle so that the microdeformation is none other than the time
evolution of these deformable directors.

It is assumed that both (9.1.1) and (9.1.2) are invertible uniquely so
that the single-valued functions Xy (x,t) and Xgi(x,t), the inverse of
Xk (X, t), can be solved from (9.1.1) and (9.1.2), i.e.,

X = Xg(x,1), (9.1.3)
Xk XK1 = Ok, Xk XLk = 0K L.

These are guaranteed by the implicite function theorem which requires that
(9.1.1) possesses continuous partial derivatives with respect to X and the
Jacobians J and j are positive:

J =detxg k>0, j =det xgx >0, (9.1.5)



