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Preface

The Tenth Dundee Biennial Conference on Numerical Analysis, held at the
University of Dundee, Scotland 5;f€gg~}gﬁf 55§s 28 Jupne - 1 July, 1933, attracted
over 200 participants from 25 countries. The organizers were again fortunate in
gaining the services of 16 eminent numerical analysts covéring a broad spectrum
of the subject and it is their papers which appear in these notes. Unfortunately
Professor Dupont's contribution was not available at the time of going to press.

In addition to the invited talks, short contributions were solicited and 69 of
these were presented at the conference in three parallel sessions. A complete list

of these submitted papers, together with authors' addresses, is also given here.

I would like to take this opportunity of thanking Professor Dr L Collatz who,
as after dinner speaker, kept the audience greatly amused with anecdotes, some true,
some with only a grain of truth and others apocryphal, concerning many well-known
mathematicians. It is also a pleasure to thank all the speakers, the session
chairmen and the members of the Mathematical Sciences Department of this University
for their contributions and assistance with the successful outcome of this
conference. I am particularly indebted to Mrs Dorothy Hargreaves for attending to
the considerable task of typing the various documents associated with the conference

and for coping so admirably with many of the organizational details,

Financial support for this conference was obtained from the European Research

Office of the United States Army. This support is gratefully acknowledged.

Dundee, January 1984. D F Griffiths
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Splines in Interactive Computer Graphics

Richard H. Bartels

ABSTRACT

Computer graphics, particularly interactive computer graphics, is not, as the name might imply,
concerned with drawing graphs, but rather with the broadest issues of manipulating, transforming, and
displaying information in visual format. It is interactive in so far as operations can be carried out in real
time — which requires algorithms of high computational efficiency and low complexity.

Splines are a valuable tool in graphics, but they are often applied in a way not used by the
mathematician. This difference raises computational issues which the numerical analyst might otherwise
never see. This talk will provide a brief introduction to such issues and follow with a study of two
current developments.

We begin with a review of the graphics environment, mentioning the modelling and display process
and pointing out some of the costly issues. The novel use of splines in interactive graphics comes through
the construction of surfaces as weighted averages of selected points, called “control vertices” in which B-
splines are taken as the weighting functions. Some examples will illustrate the characteristics of this use
of B-splines.

With this background we consider two recent developments. The first is the control-vertex
recurrence of Riesenfeld, Cohen, and Lyche; the second is Barsky’s work on geometric vs. mathematical
continuity, and his introduction of Beta-splines. We will close with some results on current research con-
cerned with a synthesis of these two developments.

1. Introduction

The Computer Graphics Laboratory at the University of Waterloo has embarked on a programme
to investigate techniques of potential use for the next generation of computer-aided design systems. The
terms of reference are interactive and surface modeling. The context is not that of fitting curves or sur-
faces to data or objects which exist — plotting or approximation is not of interest. The context is that of
(1) providing a mathematically naive industrial draftsman, sitting before a screen and control panel, with
an easy way of creating the mathematical description of an object which does not yet exist, (2) displaying
and manipulating images of that object on the screen, (3) modifying the object, and (4) ultimately gen-
erating machine-tool commands which will provide a means for producing the object. In design systems
of this type splines have been very important in the past, and they are undergoing interesting develop-
ments for the future.

In this presentation we will look at a typical visual display environment in computer graphics to set
the stage and provide a motivation for some of the things to be mentioned subsequently. There will be a
brief, informal, intuitive review of the classical construction of B-splines, concentrating on simple knots,
to provide a paradigm for some new developments. The use of B-splines in computer graphics to con-
struct curves and surfaces is distinctly different from the use of B-splines in approximation and interpola-
tion. This use will be presented, along with some of the reasons it is particularly appropriate from the
point of view of computational efficiency and human interface. The work of Lyche, Riesenfeld, and
Cohen for subdividing curves and surfaces, as a means of modification and display, will be outlined.

This will end one of the thrusts of the presentation. A second will cover the concept of geometric

(as opposed to mathematical) continuity which was explored by Barsky, and which provides a generalisa-
tion of B-splines to functions which can serve as generators for “tensed” and “biased” splines. Some



examples of curves produced by these functions, called Beta-splines, will be given.

The third portion of this presentation will cover recent progress in expanding the notion of
geometric continuity to a more general context and in adapting the classical B-spline construction
methods to the production of Beta-splines. The goal of this work is to develop subdivision recurrences for
Beta-splines.

The primary references for the spline material in this presentation are [2,5,8] and [9]. Good back-
grounds on the graphics environment are to be found in [1,6] and [7].

2. The Graphics Display Environment

The following is not the only example of a visual display environment for a design system, but it is
typical and will serve to motivate the later discussion. Figure 1 gives an overview of a display pipeline.
In it, mathematical objects are defined separately as templates, each in its own local coordinate system,
each arranged according to some canonical scaling and orientation. These objects a placed together in a
world coordinate system using rotations, translations and scalings, all of which are rigid transformations.
As such, they preserve the character of the objects; in particular, polynomials remain polynomials. The
result of these modelling transformations is a composite scene to be displayed. Each time a new view of
the scene is to be taken, viewing transformations must be carried out. In industrial design systems these
may be no-more complicated than a single orthographic projection. In graphic art systems however, a
camera model is often used: an eye-point is specified, as are viewing direction, upward orientation, angle
of view, aperture, depth of field, and image plane. The viewing frustum which results is often mapped to
a canonical viewing configuration by further rigid transformations. This canonical configuration is then
subjected to a distortion by a perspective transformation. Magically, straight lines are preserved, but
polynomials become rational functions. Under this distortion, the viewing frustum is changed into a
canonical clipping box. Up until now, objects in the scene which are not within the viewing volume may
have been involved in the computations. Algorithms are now invoked to trim away all portions of the
scene outside of this volume and project only what remains onto the image plane. , The projected objects
must then be discretised, if the display is a raster device, or be approximated in outline by simple, known
curves, if the display is a calligraphic device.

Profound implications are hidden in the above. To do all of this exactly, transformations would
have to be applied to infinite numbers of points or to functional descriptions of surfaces; extensive root-
finding techniques would be required to determine the curves of intersection between pairs of surfaces, as
well as between surfaces and the sides of the viewing frustum; information would also have to be
extracted to determine which surfaces are obscured by which — requiring that additional root-finding
operations be performed to trace the silhouettes of objects with respect to the eye-point — and finally,
discretisation processes akin to differential-equation solvers would have to be applied to paint an image
on the display. For the purposes of industrial design, a wire-frame rendering of each object in the scene
may suffice, but for other purposes a more realistic rendering of the objects may be required. This may
involve something as elaborate as using a mathematical model of the optical characteristics of some col-
lection of materials together with computations requiring normal vectors to the various surfaces and the
illuminant details of a number of light sources. If all of this is to be interactive, then it must take place
as fast as the refresh rate of the display — that is; typically within a sixtieth to a thirtieth of a second. (It
is small wonder that the Cray computer corporation has started to advertise in the graphics trade litera-
ture.) Finally, if machine-tool descriptions are needed, while they don’t need to be performed with the
speed of display computations, they will still involve determining how to track contours on a surface
while holding a prescribed orientation to the normal — which could be a nontrivial problem in control
theory.

The only salvation for owners of small computers lies in determining how little one can do, how
efficiently and how approximately, without the disturbing the final result within visual or machine-tool
tolerances. In graphics this is accomplished by “creative cheating”, which frequently involves applying
all of the above processes only to a small numbers of representers of the objects in question. For exam-
ple, it is still usual to deal mostly with polyhedral bodies, plus a few additional primitive forms such as
spheres and cylinders, and carry out the transformations of the pipeline merely on vertices, centres, radii,
etc., using the images of these few representers at the bottom of the pipeline to recreate approximate



pictures. One feature of the unique way in which spline surfaces are used in graphics derives from the
fact it provides an efficient way for the surfaces to be approximated to arbitrary accuracy by polyhedral
surfaces. It is to these polyhedra rather than to the splines themselves that the above computations in
the pipeline can be applied.

IR LA k]

Figure 1. The graphics display pipeline.



3. Splines
For any k >0, let P be the space of polynomials of order k with real coefficients:
pu) = cotcu+ - +out?
For any m >0 let U™ be a sequence of m knots:
U = {ug,...,un},

where

Each knot w; has multiplicity |;, the count of the knots in U™ having value equal to u;. This includes u,
itself, By convention, W; <k for all i; hence, u; <u;4, for all i =0,...,m—k. As a further conven-
tion, let a <ug and b > u,,, and agree that nothing outside of [a,b) is of any interest.

The set of the M distinct, consecutive values in U™

< v <y,

are the breakpoints of U™. ({ip,...,i,}C{0,...,m} is any conveniently chosen subsequence
which picks out the breakpoints.) Each breakpoint is associated with the multiplicity of its correspond-
ing knots, and the breakpoint intervals defined by U™ U [a,b) are the half-open intervals

I, = [a,u,)

I = [u,j_l,u,-j) forj=1.... , M .

and

Iyvr = lw,,b) .

Formally:

Definition: Assuming that k=1, that m =k —1, and that 1=<p,<k for all i=0,..., m, then
S(P*, U™ a ,b), the set of all splines of order k on [a,b) with the knot sequence U™ CJ[a,b), break-
points {u;,u ..., u;,, }CU™, and breakpoint intervals Iy, . .., I, is the set of all functions of the

form s(u) satisfying:

s(u)eP* foreachl; (j=0,...,M+1)

and for any breakpoint u,;, associated with multiplicity w, (j=0...., M),
if P
s()=p, eP* onl;
and |
s@)=p;41€P* onl;y,
then

DPpyw) = DPpjsi(wy) for =0, .., k—1— .

In the definition, DY p(u;) stands for the /** derivative with respect to u of p(u) evaluated at u;.
We denote p;, p;4; as the segment polynomials which describe s(u) in the interval I; and I;; respec-
tively. Notice that any issue of end conditions is left open. It is only necessary that a spline be a polyno-
mial in the intervals Iy and I,4,. Imposing various end conditions will serve merely to isolate subsets of
splines, and this issue will be left aside.

It is easily verified that S(P*,U™,a,b) is a vector space with P¥ as a subspace.




4. The One-Sided Basis
The dimension of S(P*,U™ ,a,b) is
kE+p + - +p, .

This can be made plausible by considering any s(u)eS(P*,U™,a,b) as u moves from a rightwards to
b. On the breakpoint interval Iy=[a,u;), s(u) = po(u) is a polynomial of order k; hence it can be
represented as a linear combination of

(u—a)¥, (u—a),...., (u—a)t . 4.1)
In the next interval to the right u; <u <, s(u) changes to

s(u) = polu)+{(pi(u) — polu)) .
po(u) + A, (u) ,

. k—1—p e
where Aj(u) “touches zero with C ‘o continuity” at u =u;. It proves true that A;(u) can be
represented as a linear combination of the truncated power functions

k—2 Hy

(v —w ) (u—w)s72, (u~ uio): (4.2)

Consequently s(u) can be represented on the interval @ <u <<u;, as a linear combination of the functions
(4.1) together with those of (4.2).

The same arguments apply as u crosses u;, and p;(u) changes into
pj+1(m) = pj(u) + Aj ()
foreach j=0,... , M.

After further considerations:

Theorem: The functions
(u—a), (u—a),...., (u—a)t,

together with
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(u~uil)§- 1s("—“x‘, -’f— 2,...,(u—u,1)+ k for u;,
(4.3)
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form a basis for S(P*, U™ ,a,b).

There are precisely k-+p,+--- +y;, functions in (4.3). This is the one-sided basis of
S(P*, U™ ,a,b).

5. Linear Combinations and Cancellation

Computing the coefficients in the representation of a spline with respect to this basis is often an ill-
conditioned problem. This arises, roughly, as follows. Most splines with which we would want to deal in
practice have moderate values throughout the interval [a,b). The one-sided basis functions, on the other
hand, blow up as u increases. Hence, if this basis is used to express “reasonable” spline curves and sur-
faces, the coefficients required for this could be expected to flip-flop between large positive and negative



values in order to force numerical cancellation of the basis-function values as u increases.

A second shortcoming, from the point of view of graphics, is that the one-sided basis functions do
not have compact support; they are all nonzero on half of the real line. If a curve or surface is
represented in terms of the one-sided basis and some change is made to the representation to provide an
adjustment of shape, then the change has an influence over the entire curve or surface. A complete
recomputation of the curve or surface is necessary; no local updates are possible. The continual need
engage in costly recomputations will all but rule out interactive graphical design. In graphics it is as sig-
nificant that the B-splines have compact support as that they provide well-conditioned representations.

The key to constructing a desirable basis from the less desirable (but conceptually simple) one-
sided basis is to recognise (1) that a basis with compact support will be an answer to the numerical objec-
tions above as well as (2) being desirable from the point of view of computational efficiency. Compact
support can be achieved by a process of symbolic cancellation, before any numerical computations are
begun. It is through this door that divided differences enter.

To illustrate, let k = 4 (cubic splines), and consider

U < Ui < Upps < Uigy < Ujpa -

We have
0 u<u;
(e —uy )3 —(u—u)d ) —(u—u)* w=<u <ujy
(41— uy)
=3+ 3u(u; ) U1 =u
—(u,2+1 +“i+1“i+ur2)

which is a “nicer” function than either (# —u;)3 or (¥ —u;4;)} in that it grows only quadratically for
u —oo. Denote the result by

(u _”i+1)<3+ — (u _ui)3L

Uip) — U

Lo uppr:t 1w —1)3

Since this function is a linear combination of (x —u;)} and (u—u,-+1)?;., we may substitute it for
one of these truncated power functions, ¢.g. for (u —u;)}. We may carry out a similar operation for the
pairs

{uirrstiea} s {Wivnwiva}, and {uies,44)
to produce quadratic-growing substitutes for
(v —uip)d, (=)}, and (v —u43)3
Going one stage further, let
Lo g tir2it 1 — 0)3

Qs izt 1 — )% — [ ue:0 (e — 1)

Uivy — Uy

s

This function grows only linearly for ¥ —co. It may be used to replace [u;,u; +;:¢](u —1)3, and the dif-
ferencing and replacement may be repeated pairwise, again. Ultimately we arrive at a function which
“grows as zero” for u —oo.

‘When multiple knots appear, the construct
(u —u)} — (u— ;)3

Ui+ — Ui

g, u1:tJ(u— )5 =

is regarded as being taken in the limit as u; —w,;,. This provides the convention that the derivatives of



