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PREFACE

Volume 2 of Applications of Management Science continues to present
solid research aimed at the resolution of contemporary management prob-
lems. The purpose of the series is to show how the utilization of op-
erations research, management science, decision science, and manage-
ment information system technology can improve decision making in
organizations. In addition, the series seeks to demonstrate the problems
and opportunities for management science in the area of public policy
and at the interface of public and private policy

It has been clear for some time that a considerable gap exists between
theoretical developments in management science and realized applica-
tions in organizations. On the one hand, this situation has motivated
research on the implementation of models and decision support systems;
we know more about the behavioral process of implementation and have
a better understanding of how to manage the change necessary to bring
about implementation. On the other hand, this situation has also brought

ix
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about a change in the way management science models are developed;
we are increasingly concerned with representing problems as they are,
even if such representations are less elegant or less tractable than we
would wish. However, concern with implementation and with the rep-
resentativeness of problems does not preclude the highest-quality man-
agement science work.

Applications of Management Science is an outlet for original research
in management science and is distinguished by its form, its frequency
of appearance, and its focus. The series is essentially a research an-
thology of papers that are substantive and may exceed the length limi-
tations of traditional journal articles. Although any work dealing with
the application of management science is appropriate, the ‘‘longer form”’
provides an outlet for papers that is not otherwise available. The series
also provides an outlet for papers presented at symposia that are refereed
to journal standards. The series includes both theoretical and method-
ological papers so long as they are extended toward application; in ad-
dition, comprehensive review articles are published. Excluded from Ap-
plications of Management Science, although appropriate for many other
Journals, are strictly theoretical or methodological developments, such
as work on efficient algorithms. Also excluded are papers that do not
directly concern decision making in organizations, such as the applied
mathematics of sports.

All papers appearing in Applications of Management Science are ref-
ereed, and I am grateful to those who served as reviewers for each of
the manuscripts in Volume 2. My primary debt, of course, is to the
authors. By working at the boundary of theory and practice, they have
helped to legitimize the mission of management science and to offer
direct proof of its applicability to management decision making.

Randall L. Schultz
Series Editor
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OPTIMAL PROJECT COMPRESSION
UNDER QUADRATIC COST
FUNCTIONS

S.E. Elmaghraby and A.M. Salem

ABSTRACT

We ‘are given a directed acyclic network representing a project, and the
cost-time trade-off function for each activity, which is assumed convex
and quadratic in the activity duration. It is desired to determine the optimal
activity durations that achieve a desired completion date with minimum
cost.

Section 1 deals with the special case of continuous derivatives, while
Section 2 deals with the general case that permits discontinuities in the
derivative at the upper and lower bounds of the activity duration. Efficient
algorithms are developed to obtain respective optima. In addition to sat-
isfying the stated objective, the algorithms also yield the optimal cost for
all durations between the specified duration and the constrained project
duration, which is helpful for the purpose of sensitivity analysis. The
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2 S.E. ELMAGHRABY and A.M. SALEM

algorithms have been programmed on the computer, and computational
experience is provided.

1. QUADRATIC COST WITH CONTINUOUS
DERIVATIVE

1.1. The Problem

A central problem in the study of deterministic activity networks
(DANs) is that of optimal project compression. Simply stated, it runs
as follows: Given a project and its associated graph G = (N, A) of N
nodes (representing project ‘‘events’’) and A arcs (representing project
““activities’’!) and a function C;(y;) representing the variation of activity
cost with its duration y;, determine the optimal allocation of specified
available funds W to the various activities to terminate the project as
early as possible; or, alternatively, determine the minimum funds re-
quired to complete the project no later than a specified time T. In this
latter version, the problem is meaningful only if T, is less than the
“normal’’ duration of the project; i.e., if T, is less than the length of the
critical path (CP) that would result when each activity is run at its
“‘normal’’ level (assumed the cheapest). To avoid trivialities, we assume
that T, is feasible; i.e., it is not less than the length of the CP that results
when each activity is run at its ““crash’’ duration.

The practical significance of this problem resides in the ability to
specify the most efficient utilization of investments in the ‘“‘speeding up”’
of the project. Alternatively, it serves to alert the manager to the range
of requirements of additional investments should he wish to deviate
appreciably from the ‘‘normal’’ flow of work in the project.

The mathematical statement of the problem runs as follows:

Minimize E Cii(yiy) )
GHEA
such that the precedence constraints are respected, and the project is
completed on or before time T,. Let t; denote the time of realization of
node i. Then if activity (ij) € A, with the arrow in the direction i — i
we must impose the restriction

-t + tj — Yjj = 0, V(l_]) € A. (2)
The completion time requirement adds the constraint
t —t,= —T,. 3)

Here we assume that the “‘start node’’ is node 1, and that the ‘‘terminal’’
node is n; whence the set N = {1, 2, ..., n}. Finally, the activity duration
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y; is bound from below by a lower limit ¢; = 0, and from above by an
upper limit u; > €;; i.e., 0 < €; < y; < uy. (The only instance in which
y; is permitted to be 0 is in the case of ‘‘dummy’’ activities; see Ref.
4 for a detailed explanation of the utility of these activities.) It is more
convenient to rewrite this double inequality as

-y = —u; and y; =4, V(ij) € A. 4)

The mathematical program (1)—(4) has been extensively studied under
the various manifestations of the individual time-cost function C;: linear
(Kelly [8] and Fulkerson [6]), convex decreasing (Berman [1], Clark [2],
Lamberson and Hocking [10], and Elmaghraby [3]), concave decreasing
(Falk and Horowitz [5]), and discontinuous nonincreasing (Robinson
[12]); for a succinct summary of these approaches, see Elmaghraby [4].

Section 1 of this paper is devoted to the case in which Cjy(y;) is
quadratic decreasing with continuous derivative C{j(= 3C;;/dy;;) in the
domain y; € [€; »). The case of the discontinuous derivative is the
subject of Section 2.

It may appear that the problem is a ‘‘straightforward’’ application of
quadratic (in fact, separable) programming, and is thus amenable to
resolution by standard approaches. This is indeed true. However, in a
vein similar to the linear case, we trust that a specialized algorithm that
capitalizes on the special structure of the problem would be at least an
order of magnitude more efficient than a general procedure. The remainder
of this paper is devoted to the development of such a specialized algorithm.

1.2.  Analytical Results

Since C is quadratic with continuous derivative in the interval [€;, ),
we may assume it, without any loss of generality, to be of the form

Ciyi) = by + By(uy; — Yij)z; Gy <y;=<u 5)

Note that C; is tangent to the line Cy(yy) = by at y; = u;, at which
point Cj; = 0; see Figure 1.

We introduce one mild assumption whose justification is easily estab-
lished: the specified completion time T, is such that no activity will be
at its lower bound; i.e., at the optimum, yy > €; for all (ij) € A. Note
that if €; is small enough relative to u;, and T is not too “‘tight,”’ this
condition will be automatically satisfied. We refer to it as Condition L.

In Ref. 3, the following characterization of the optimum was given.
Let the nodes of the network be realized at times 0 = t, < t,<t, <

© < t, = T, where t; corresponds to the kth earliest node. Let D(r)
denote the sum of the derivatives Cj; of the activities that are ‘‘in progress’’
at time 7. Then the given schedule of activities is optimal if D(7) is
constant for all 7 € [0, T].
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Figure 1. The Quadratic Function C(y) = b + Bu — y)%
for{ =y =<u.

cost

Cc(L)

duration

There are two remarks to be made about that result. First, it was
proved by elementary variational-type arguments. Second, though it
characterized the optimum, it gave no procedure for achieving it. The
following development pertains to these two remarks.

The function Cy(y;) is evidently convex; add to this that all the constraints
are linear, and the conclusion immediately follows that the necessary
conditions for optimality of Kuhn and Tucker (K-T) for general nonlinear
programming are also sufficient.

Let the Lagrange multipliers be f; for (2), q for (3), and g; and h; for
(4). These K-T conditions are [stated as equalities because the y terms
are unrestricted in sign in the program (1)-(4)]—

Stationarity conditions:

C,‘Ij — fij — 8ij + hij = 0, (IJ) € A. (61)
Flow conditions:
—q fori=1
2@ —f) =4 0 fori#1,n (6.2)
J q fori = n; (ij) and (ji) € A.
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Complementary slackness conditions:

(=t —yi + t)f; =0 (6.3)
t —ta+T)g =0 (6.4)
(—yij + uyg; =0 (6.5)
(vi — €)h; =0 (6.6)
fi;, gi;, hij, and @ = 0. 6.7)

We are interested only in activities for which u > ¢; since u = ¢ implies
that the duration is a constant equal to £, in contradiction to Condition
L. At the optimum we know, by Condition L, that ¢; < y¥ < uy, for
all (ij) € A. First, consider the activities of durations y} = uy: (6.6) >
hi# = 0, and we know that Cj;(u;) = 0. Consequently, (6.1) > —fk -
g = 0, which, by condition (6.7), implies that f ¥ = 0 = g#. We therefore
conclude that such activities do not contribute to the sum of (6.2).

Next consider the activities of durations y¥ € (¢;, u;): (6.5) and (6.6)
= gf = 0 = hj§; then (6.1) > f* = Ci(y#). Finally, (6.2) > D(r) =
constant (= q*) for all = € [0, T,], which is precisely the condition of
Elmaghraby [3]. This provides an alternate and more direct proof of that
result, albeit not elementary.

We turn now to the problem of algorithmic procedures to achieve the
optimum.

Assertion 1.1:  The necessary and sufficient conditions for optimality
stated above are equivalent to the conditions

—a fori=1
2 (Bid;; — Bidy) = 0 fori#1,n @)
j a fori=n

’

where d; is the reduction in activity (ij), and a is some constant (actually
= q*/2). Proof: Just substitute for the value of C{(y;) in (6.2). B

There are two pertinent remarks at this point. First, it is evident that
one need not deal with the total reduction in duration d;, but that it is
sufficient to write (7) for the incremental reductions {d"} carried out in
iteration r. Second, it is equally evident that Equations (7) have the form
of *“‘conservation of flow’’ equations (in the normalized variables 95

d;/By), in which one equation is redundant. In the sequel we shall c0n51der
the first equation (corresponding to node i = 1) to be the redundant one,
and eliminate it from consideration, which is equivalent to putting
t, = 0.
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As a preliminary to the following results, we introduce a few concepts
and notations. Define the ‘‘critical subnetwork’ (CSN) to be the set of
longest paths in the network and let K denote its cardinality; i.e., K =
ICSN]|. Clearly, the CSN changes from iteration to iteration (since it is
augmented by new paths that become critical as the project’s duration
is shortened), and we may sometimes resort to the notation CSN® to
denote the CSN at a particular iteration, and set K® = |CSN™|. The
networks of concern to us are directed and acyclic, i.e., contain no loops
(in the usual sense). Still, we wish to characterize two simple paths (or
subpaths) that have the same start and terminal nodes; we shall refer to
them as loops, it being understood that ‘‘going around the loop’’ must,
necessarily, move in the direction of the arrows from start to terminal
and against the arrows from terminal to start.

Every subgraph of G which contains N — 1 arcs and has no loops is
a spanning tree. Any tree of G has A — N + 1 chords; and each chord
of a tree is contained in a unique loop which contains no other chords
of the tree. The set of A — N + 1 loops corresponding to the chords
of the tree is called a fundamental set of loops, because any other loop
may be obtained as a linear combination of the elements of this fundamental
set.

Assertion 1.2:  If the CSN contains K arcs, there shall be K simultaneous
linear equations relating the values of the individual (incremental) reductions
{d;} to the constant a at the rth iteration. Proof: Consider a particular
iteration. If the CSN has K arcs and m nodes, we must have K = m
— 1. Assertion 1, applied to CSN, would result in m — 1 (independent)
equations. Additionally, there are K — m + 1 fundamental loops (see
Ref. 11, p. 397), yielding that many linear equations in the d; terms (each
loop equates the total amount of reduction in the critical activities in the
two branches of the loop to maintain their criticality) which are independent.
The sum is K independent equations, as asserted. l

For ease of reference, we denote the resulting matrix of coefficients
by B, and represent the set of equations in the concise form

BD = ae,_|, ®

where B” is a K® x K® square matrix; D® is a K® x 1 vector of
(incremental) reductions {d}; a® is a scalar; and e, isa K” x 1
vector of zeros except in position m® — 1 where it has a 1.

The (unique) solution of (8) gives the values of d in terms of a®,
which we write as

dif = vifa®. ©)



Project Compression under Quadratic Cost 7

It is easy to see that vj is given by the (ij)zh entry in column m — 1 of
the inverse of B. The matrix B itself is easily determined from any
arborescence on the CSN (that is, a tree rooted at node 1 such that
there is a unique directed simple path from node 1 to each node j in the
CSN), and its corresponding chords, together with the system of Equations
(7). Therefore, there remains only the determination of the value of a®
to completely determine the necessary reduction in each activity in the
current CSN®@,

Slight reflection reveals that a® measures the current reduction in the
value of t,, the total project duration.” Evidently, such reduction is
bounded by two eventualities: either a noncritical path becomes critical
(necessitating the redefinition of the CSN) or the specified project duration
T, is achieved. Let a, and a, denote these two bounds on the value of
a, respectively.? Clearly, a = min(a,, a,). We concentrate on the deter-
mination of a,, since a, is trivially obtained from the difference between
the current value of t, and T..

The basic idea for the determination of the value of the bound a, runs
as follows. At the rth iteration, the arcs of G are partitioned into two
mutually exclusive subsets: CSN and NCSN (for noncritical subnetwork).
Note that while CSN is connected and contains nodes 1 and n, the graph
NCSN need not be connected and may rnot contain nodes 1 and n. Some
nodes may be repeated between CSN and NCSN, since criticality (and
noncriticality) is defined relative to the arcs (= activities).

Consider any pair of nodes i and j, i < j, in CSN; either there exists
a path in CSN directed from i to j, or none exists. Consider the same
pair of nodes from the point of view of NCSN; we have two possibilities:

1. Either node, or both, are missing from NCSN. Then this pair will
have no influence on the value of a,.

2. Both nodes are present in NCSN. Then either there exists no path
(in NCSN) from i to j, in which case this pair of nodes will also
have no influence on the value of a,; or there exists at least one
path (in NCSN) from i to j. In the latter case, determine the
duration of the longest path (in NCSN) from i to j.

Our analysis thus far leads us to one of two situations depicted sche-
matically in Figure 2:

(@) No path exists between i and j in CSN, but a path exists in
NCSN. Then, by the structure of CSN, there must exist two
nodes € and k, with 1 < ¢ <i <j < k < n, such that there are
two simple critical paths from € to k, one containing node i and
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Figure 2. The Two Possible Eventualities in the Determination of a,.

Longest path from
i to j in NCSN

(a) No path exists between i and j in CSN (a cross-over exists)

Longest path from
i to j in NCSN

A CP from i to j in CSN

(b) A path exists between i and j in CSN (a loop exists)

the other containing node j, with the noncritical path (in NCSN)
from i to j “‘crossing over’ as shown in Figure 2(a).

(b) A path exists between i and j in CSN and a path exists in NCSN.
These two paths must form a loop, as depicted in Figure 2(b).

To determine the value of a, under either eventuality, denoted by a,(ij)
since it depends on the pair i and j, we reason as follows:

Denote any path (or subpath) in CSN between nodes i and j by #(ij),
and the longest path in NCSN between the same two nodes by P(ij).
Clearly, if the length of path =(ij) is reduced by an amount § > 0, it
must be true that § = a12,enij) Vo for some value of a,, where the
summation is taken over all activities {w} that lie on the path #(ij). It



