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PART 1

Chapter 1

Preliminary Results

We take as our starting point the text Finite Group Theory [FGT],
although we need only a fraction of the material in that text. Frequently
quoted results from [FGT] will be recorded in this chapter and in other
of the introductory chapters.

Chapters 1 and 2 record some of the most basic terminology and no-
tation we will be using plus some elementary results. The reader should
consult [FGT] for other basic group theoretic terminology and notation,
although we will try to recall such notation when it is first used, or at
least give a specific reference to [FGT] at that point. There is a “List
of Symbols” at the end of [FGT| which can be used to help hunt down
notation.

We begin in Section 1 with a brief discussion of abstract representa-
tions of groups. Then in Section 2 we specialize to permutation represen-
tations. In Section 3 we consider graphs and in Section 4 geometries (in
the sense of J. Tits) and geometric complexes. In the last few sections of
the chapter we record a few basic facts about the general linear group
and fiber products of groups.

1. Abstract representations

Let C be a category. For X an object in C, we write Aut(X) for the
group of automorphisms of X under the operation of composition in C
(cf. Section 2 in [FGT]). A representation of a group G in the category C
is a group homomorphism 7; G — Aut(X). For example, a permutation
representation is a representation in the category of sets and a linear
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representation is a representation in the category of vector spaces and
linear maps.
If o : A — B is an isomorphism of objects in C then « induces a map

a* : Mor(A, A) — Mor(B, B)
B o™ fa

and a* restricts to an isomorphism o* : Aut(A) — Aut(B). Thus in
particular if A = B then Aut(A) = Aut(B).

A representation 7 : G — Aut(A) is faithful if 7 is injective.

Two representations 7 : G — Aut(A) and 0 : G — Aut(B) in C are
equivalent if there exists an isomorphism o : A — B such that o = ma* is
the composition of m with a*. Equivalently for all g € G, (¢g7)a = a(go).

Similarly if m; : G; — Aut(4;), i = 1,2, are representations of groups
G; on objects A; in C, then m; is said to be quasiequivalent to mq if
there exists a group isomorphism 8 : G; — G2 and an isomorphism
a: Ay — Ag such that 79 = f~lm a*. Observe that we have a permu-
tation representation of Aut(G) on the equivalence classes of represen-
tations of G via a : 7 — am with the orbits the quasiequivalence classes.
Write Aut(G)y for the stabilizer of the equivalence class of m under this
representation. The following result is Exercise 1.7 in [FGT]:

Lemma 1.1: Let m,0 : G — Aut(A) be faithful representations. Then
(1) m is quasiequivalent to o if and only if G is conjugate to Go in
Aut(A).
2) AutAut(A) (Gr) =2 Aut(G)y.

If H < G then write Autg(H) = Ng(H)/Cg(H) for the group of
automorphisms of H induced by G. Also

Cg(H)={ceG:ch=hcforall he H}

is the centralizer in G of H and Ng(H) is the normalizer in G of H,
that is, the largest subgroup of G in which H is normal.

2. Permutation representations

In this section X is a set. We refer the reader to Section 5 of [FGT] for
our notational conventions involving permutation groups, although we
record a few of the most frequently used conventions here. In particular
we write Sym(X) for the symmetric group on X and if X is finite we
write Alt(X) for the alternating group on X. Further S,, A, denote the
symmetric and alternating groups of degree n; that is, S, = Sym(X)
and A, = Alt(X) for X of order n.
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Let # : G — Sym(X) be a permutation representation of a group
G on X. Usually we suppress m and write zg for the image z(gr) of a
point z € X under the permutation gm, g € G. For § C G, we write
Fiz(S) = Fizx(S) for the set of fixed points of S on X. For Y C X,

Gy={9geG:yg=yforallyeY}
is the pointwise stabilizer of Y in G,
GY)={g9geG:Yg=Y}

is the global stabilizer of Y in G, and G¥ = G(Y)/Gy is the image of
G(Y) in Sym(Y') under the restriction map. In particular G, denotes
the stabilizer of a point y € X.

Recall the orbit of z € X under G is zG = {zrg : g € G} and G is
transitive on X if G has just one orbit on X. If G is transitive on X
then our representation 7 is equivalent to the representation of G by
right multiplication on the coset space G/G, via the map G;g — zg
(cf. 5.9 in [FGT]).

A subgroup K of G is a regular normal subgroup of G if K 4 G and
K is regular on X; that is, K is transitive on X and K, =1 for z € X.

Recall a transitive permutation group G is primitive on X if G pre-
serves no nontrivial partition on X. Further G is primitive on X if and
only if Gz is maximal in G (cf. 5.19 in [FGT]).

Lemma 2.1: Let G be transitive on X, z € X, and K < G. Then

(1) K is transitive on X if and only if G = G K.

(2) Ifl1# K 4G and G is primitive on X then K is transitive on X .

(8) If K is a regular normal subgroup of G then the representations
of Gz on X and on K by conjugation are equivalent.

Proof: These are all well known; see, for example, 5.20, 15.15, and 15.11
in [FGT).

Recall that G is t-transitive on X if G is transitive on ordered t-tuples
of distinct points of X. In Chapter 6 we will find that the Mathieu group
M 44 is t-transitive on m+t points form = 19andt = 3,4,5and m = 7
and t = 4,5.

Lemma 2.2: Let G be t-transitive on a finite set X witht > 2, z € X,
and1# K a4 G. Then

(1) G is primitive on X.

(2) K is transitive on X and G = G K.
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(3) If K is regular on X then |K| = |X| = p® is a power of some
prime p, and if t > 2 then p = 2.
(4) Ift=3<|X| and|G: K| =2 then K is 2-transitive on X.

Proof: Again these are well-known facts. See, for example, 15.14 and
15.13 in [FGT] for (1) and (3), respectively. Part (2) follows from (1)
and 1.1. Part (4) is left as Exercise 1.1.

3. Graphs

A graph A = (A, ) consists of a set A of vertices (or objects or points)
together with a symmetric relation * called adjacency (or incidence or
something else). The ordered pairs in the relation are called the edges of
the graph. We write u * v to indicate two vertices are related via * and
say u is adjacent to v. Denote by A(u) the set of vertices adjacent to u
and distinct from u and define ul = A(u) U {u}.

A path of length n from u to v is a sequence of vertices u = ug, uy,...,
un = v such that u;4; € uil for each i. Denote by d(u,v) the minimal
length of a path from u to v. If no such path exists set d(u,v) = oo.
d(u,v) is the distance from u to v.

The relation ~ on A defined by u ~ v if and only if d(u,v) < oo is an
equivalence relation on A. The equivalence classes of this relation are
called the connected components of the graph. The graph is connected
if it has just one connected component. Equivalently there is a path
between any pair of vertices.

A morphism of graphs is a function a : A — A’ from the vertex
set of A to the vertex set of A’ which preserves adjacency; that is,
uta C (ua)t for each u € A.

A group G of automorphisms of A is edge transitive on A if G is
transitive on A and on the edges of A.

Representations of groups on graphs play a big role in this book.
For example, we prove the uniqueness of some of the sporadics G by
considering a representation of G on a suitable graph. The following
construction supplies us with such graphs.

Let G be a transitive permutation group on a finite set A. Recall the
orbitals of G on A are the orbits of G on the set product A2 = A x A.
The permutation rank of G is the number of orbitals of G; recall this is
also the number of orbits of G; on A for z € A.

Given an orbital Q of G, the paired orbital QP of Q is

P ={(y,7): (z,9) € Q}.
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Evidently QP is an orbital of G with (QP)? = Q. The orbital £ is said to
be self-paired if QP = Q. For example, the diagonal orbital {(z,z) : z €
A} is a self-paired orbital.

Lemma 3.1: (1) A nondiagonal orbital (z,y)G of G is self-paired if and
only if (z,y) is a cycle in some g € G.

(2) If G is finite then G possesses a nondiagonal self-paired orbital if
and only if G is of even order.

(3) If G is of even order and permutation rank 3 then all orbitals of
G are self-paired.

Proof: See 16.1 in [FGT].

Lemma 3.2: (1) Let 2 be a self-paired orbital of G. Then Q is a symmet-
ric relation on A, so A = (A,Q) is a graph and G is an edge transitive
group of automorphisms of A.

(2) Conversely if H is an edge transitive group of automorphisms of
a graph A = (A, x) then the set x of edges of A 1is a self-paired orbital
of G on A, and A is the graph determined by this orbital.

Many of the sporadics have representations as rank 3 permutation
groups. Indeed some were discovered via such representations; see Chap-
ter 5 for a discussion of the sporadics discovered this way. See also Exer-
cise 16.5, which considers the rank 3 representation of Jo, and Lemmas
24.6, 24.7, and 24.11, which establish the existence of rank 3 represen-
tations of Mc, Uy(3), and HS.

In the remainder of this section assume G is of even order and permu-
tation rank 3 on a set X. Hence G has two nondiagonal orbitals A and
I" and by 3.1, each is self-paired. Further for z € X, G; has two orbits
A(z) and I'(z) on X — {z}, where A(z) = {y € X : (z,y) € A} and
[(z) ={z€ X :(z,2) €T}. By 3.2, X = (X,A) is a graph and G is
an edge transitive group of automorphisms of X. Notice A(z) = X(z)
in our old notation.

The following notation is standard for rank 3 groups and their graphs:
k = |A()], | = |T(z)], A = |A(z) N A(y)| for y € A(z), and p =
|A(x) N A(2)| for z € T'(z). The integers k, [, A, u are the parameters of
the rank 3 group G. Also let n = | X| be the degree of the representation.

Lemma 3.3: Let G be a rank 3 permutation group of even order on a
finite set of order n with parameters k,l, A\, u. Then

(1) n=k+1+1.
() ul=k(k—r—1).
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(8) Ifu#0 ork then G is primitive and the graph G of G is con-
nected.
(4) Assume G is primitive. Then either
(a) k=landp=X1+1=k/2, or
(b) d=(\—p)?+4(k - p) is a square and setting D = 2k +
(A — p)(k + 1), d/2? divides D and 2d'/2 divides D if and
only if n is odd.

Proof: See Section 16 of [FGT].

4. Geometries and complexes

In this book we adopt a notion of geometry due to J. Tits in [T1].

Let I be a finite set. For J C I, let J' = I — J be the complement of
J in I. A geometry over I is a triple (T, 7, %) where I is a set of objects,
7 :I' — I is a surjective type function, and * is a symmetric incidence
relation on I' such that objects u and v of the same type are incident if
and only if u = v. We call 7(u) the type of the object u. Notice (T, *) is
a graph. We usually write I for the geometry (T, 7, *) and T'; for the set
of objects of I of type 1.

The rank of the geometry I is the cardinality of I.

A flag of T is a subset T of " such that each pair of objects in T is
incident. Notice our one axiom insures that if T is a flag then the type
function 7 : T — I is injective. Define the type of T to be 7(T") and the
rank of T to be the cardinality of T'. The chambers of I" are the flags of
type I.

A morphism a : T' — I of geometries is a function o : I' — I of
the associated object sets which preserves type and incidence; that is,
if u,v € T with u % v then 7(u) = 7/(uc) and ua ¥ va. A group G of
automorphisms of I is edge transitive if G is transitive on flags of type
J for each subset J of I of order at most 2. Similarly G is flag transitive
on I if G is transitive on flags of type J for all J C I.

Representations of groups on geometries also play an important role
in Sporadic Groups. For example, the Steiner systems in Chapter 6 are
rank 2 geometries whose automorphism groups are the Mathieu groups.
Here are some other examples:

Examples (1) Let V be an n-dimensional vector space over a field F.
We associate a geometry PG(V) to V called the projective geometry of
V. The objects of PG(V) are the proper nonzero subspaces of V, with
incidence defined by inclusion. The type of U is 7(U) = dim(U). Thus
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PG(V) is of rank n — 1. The projective general linear group on V is a
flag transitive group of automorphism of PG(V).

(2) A projective plane is a rank 2 geometry I' whose two types of
objects are called points and lines and such that:

(PP1) Each pair of distinct points is incident with a unique line.
(PP2) Each pair of distinct lines is incident with a unique point.
(PP3) There exist four points no three of which are on a common line.

Remarks. (1) Rank 2 projective geometries are projective planes.

(2) If T is a finite projective plane then there exists an integer ¢ such
that each point is incident with exactly g + 1 lines, each line is incident
with exactly ¢ + 1 points, and I has g% + ¢ + 1 points and lines.

Examples (3) If f is a sesquilinear or quadratic form on V then the
totally singular subspaces of V are the subspaces U such that f is trivial
on U. The set of such subspaces forms a subgeometry of the projective
geometry. See, for example, page 99 in [FGT).

(4) Let G be a group and F = (G; : i € I) a family of subgroups
of G. Define I'(G, F) to be the geometry whose set of objects of type
i is the coset space G/G; and with objects G;z and Gjy incident if
Giz N Gjy # 2. Observe:

Lemma 4.1: (1) G is represented as an edge transitive group of auto-
morphisms of I'(G,F) via right multiplication and I'(G,F) possesses a
chamber.

(2) Conversely if H is an edge transitive group of automorphisms of
a geometry I' and T' possesses a chamber C, then I' & I'(H, F), where
F=(Hc:ceO).

The construction of 4.1 allows us to represent each group G on var-
ious geometries. The construction is used in Chapter 13 as part of our
machine for establishing the uniqueness of groups. Further the construc-
tion associates to each sporadic group G various geometries which can
be used to study the subgroup structure of G. The latter point of view is
not explored to any extent in Sporadic Groups; see instead [A2] or [RS]
where such geometries are discussed. We do use the 2-local geometry of
Moy to study that group in Chapter 7.

Define the direct sum of geometries I'; on I;, i = 1,2, to be the geome-
try I'y ®T's over the disjoint union I of I; and I whose object set is the
disjoint union of Iy and I'z, whose type function is 7, U 15, and whose
incidence is inherited from I} and I's with each object in I'; incident
with each object in I's.
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Example (5) A generalized digon is a rank 2 geometry which is the
direct sum of rank 1 geometries. That is, each element of type 1 is
incident with each element of type 2.

Lemma 4.2: Let G be a group and F = {G1,G2} a pair of subgroups
of G. Then T'(G, F) is a generalized digon if and only if G = G1Gs.

Proof: As G is edge transitive on I, I' is a generalized digon if and only
if G4 is transitive on I'; if and only if G = G1G3 by 2.1.1.

Given a flag T', let I'(T') consist of all v € I' — T such that v x ¢ for all
t € T. We regard I'(T) as a geometry over I — 7(T'). The geometry I'(T')
is called the residue of T'.

Example (6) Let I' = PG(V) be the projective geometry of an n-
dimensional vector space. Then for U € T, the residue I'(U) of the
object U is isomorphic to PG(U) & PG(V/U).

The category of geometries is not large enough; we must also consider
either the category of chamber systems or the category of geometric
complexes.

A chamber system over I is a set X together with a collection of
equivalence relations ~;, i € I. For J C I and =z € X, let ~; be the
equivalence relation generated by the relations ~;, j € J, and [z]; the
equivalence class of ~ ; containing z. Define X to be nondegenerate if for
each z € X, and j € I, {z} = (;[z]i and [z]; = ;¢ [z]i- A morphism
of chamber systems over I is a map preserving each equivalence relation.

The notion of “chamber system” was introduced by J. Tits in [T1].

Recall that a simplicial complex K consists of a set X of vertices
together with a distinguished set of nonempty subsets of X called the
simplices of K such that each nonempty subset of simplex is a simplex.
The morphisms of simplicial complexes are the simplicial maps; that is,
a simplicial map f: K — K’ is a map f : X — X' of vertices such that
f(s) is a simplex of K’ for each simplex s of K.

Example (7) If A is a graph then the cliqgue complez K(A) is the sim-
plicial complex whose vertices are the vertices of A and whose simplices
are the finite cliques of A. Recall a clique of A is a set Y of vertices such
that y € z1 for each z,y € Y. Conversely if K is a simplicial complex
then the graph of K is the graph A = A(K) whose vertices are the
vertices of K and with z * y if {z,y} is a simplex of K. Observe K is a
subcomplex of K(A(K)).

Given a simplicial complex K and a simplex s of K, define the star of s
to be the subcomplex st (s) consisting of the simplices ¢ of K such that
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sUt is a simplex of K. Define the link Linkg(s) to be the subcomplex
of sty (s) consisting of the simplices ¢ of stx(s) such that tNs = 2.

A geometric complez over I is a geometry I' over I together with a
collection C of distinguished chambers of I such that each flag of rank 1
or 2 is contained in a member of C. The simplices of the complex are the
subflags of members of C. A morphism a : C — C’ of complexes over I is
a morphism of geometries with Ca C C’. Notice a geometric complex is
just a simplicial complex together with a type function on vertices that
is injective on simplices.

Example (8) The flag complez of a geometry I is the simplicial com-
plex on I' in which all chambers are distinguished. Notice the flag com-
plex is a geometric complex if and only if each flag of rank at most
2 is contained in a chamber. Further as a simplicial complex, the flag
complex is just the clique complex of I' regarded as a graph.

Many theorems about geometries are best established in the larger
categories of geometric complexes or chamber systems. Theorem 4.11 is
an example of such a result. We find in a moment in Lemma 4.3 below
that the category of nondegenerate chamber systems is isomorphic to
the category of geometric complexes. I find the latter category more
intuitive and so work with complexes rather than chamber systems. But
others prefer chamber systems and there is a growing literature on the
subject.

Given a chamber system X define I'y to be the geometry whose ob-
jects of type i are the equivalence classes of the relation ~; with A B if
and only if ANB # @. For z € X let Cy be the set of equivalence classes
containing x; thus Cz is a chamber in I'yx. Define Cx to be the set of
chambers Cz, z € X, of I'x. If @ : X — X' is a morphism of chamber
systems define a¢ : Cx — Cx+ to be the morphism of complexes such
that a¢ : A — A’ for A a ~; equivalence class of X and A’ the ~;
equivalence class containing Aa.

Conversely given a geometric complex C over I let ~; be the equiva-
lence relation on C defined by A ~; B if A and B have the same subflag
of type i’. Then we have a chamber system X with chamber set C and
equivalence relations ~;. Further if @ : C — C’ is a morphism of com-
plexes let ax : X¢ — X/ be the morphism of chamber systems defined
by the induced map on chambers.

Lemma 4.3: The category of nondegenerate chamber systems over I is

isomorphic to the category of geometric complezes over I via the maps
X —Cx and C — Xe.
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Example (9) Let G be a group and F = (G; : i € I) a family of
subgroups of I. For J C I and z € G define

Sjz={Gjz:je J}.

Thus S is a flag of the geometry I'(G, F) of type J. Observe that the
stabilizer of the flag S; = S is the subgroup G; = nje 7 Gj- Define
C(G,F) to be the geometric complex over I with geometry I'(G,F)
and distinguished chambers S;;, * € G. Then C(G, F) is a geometric
complex with simplices Sj;, J € I, z € G, and G acts as an edge
transitive group of automorphisms of C(G, F) via right multiplication,
and transitively on C(G, F). Indeed:

Lemma 4.4: Assume C is a geometric complex over I and G is an edge
transitive group of automorphisms with C = CG for some C € C. Let
G; = Gg,, where z; € C is of type i, and let F = (G; : i € I). Then the
map z;g — Gig is an isomorphism of C with C(G, F).

Further we have a chamber system X(G,F) whose chamber set is
G/Gy and with Gyz ~; Gy if and only if zy~! € Gy. Observe that
the map Grx + Sy, defines an isomorphism of the chamber systems
X(G,}-) and XC(G,.F)'

The construction of 4.4 allows us to represent a group G on many
complexes. We make use of this construction in Chapter 13 as part of
our uniqueness machine.

Let C = (T',C) be a geometric complex over I. Given a simplex S of
type J, regard the link Linkg(S) of S to be a geometric complex over
J'; thus the objects of Linkc(S) of type i € J' are those v € T'; such
that S U {v} is a simplex and with v * u if SU {u,v} is a simplex, and
the chamber set C(S) of Linkc(S) consists of the simplices C — S with
S C C € C. For example, C = Link¢(9) is the link of the empty simplex.
Notice that if all flags are simplices then the geometry of Linkq(S) is
the residue I'(S) of S in the geometry T'.

We say C is residually connected if the link of each simplex of corank at
least two (including @ if |I| > 2) is connected. A geometry I is residually
connected if each flag is contained in a chamber and the flag complex of
T is residually connected.

Lemma 4.5: Let F = (G; : i € I) be a family of subgroups of G. Then

(1) T(G,F) is connected if and only if G = (F).
(2) Linkc(Sy) 2C(Gy,Fy) for each J C I, where

Fy= (GJU{i} :ie J').
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(3) C(G,F) is residually connected if and only if Gj = (F;) for all
J C I

Proof: Notice (1) and (2) imply (3) so it remains to prove (1) and (2).
As F is a chamber, the connected component A of G; in I is the same
for each i, and H = (F) acts on A. Conversely as G; is transitive on
T';(G;) for each j, A C A’ = J; GjH,so A = A’ and H is transitive on
[; N A for each i. Thus as G is transitive on I';, I' is connected if and
only if H is transitive on I'; for each i, and as G; < H this holds if and
only if G = H. Thus (1) is established.
In (2) the desired isomorphism is Gyz +— Sk for z € Gj, K =
Ju{k}.
Lemma 4.6: Assume C is a residually connected geometric complex
over I, J C I with |J| > 2, and z,y € T'. Then there ezists a path
T=uvg,... ,vm =y in T with 7(v;) € J for all0 <i <m.

Proof: Choose z,y to be a counterexample with d = d(z,y) minimal.
As the residue I' of the simplex @ is connected, d is finite, and clearly
d > 1. Let £ = vg---vy = y be a path. By minimality of d there is a
path vy = ug---um =y with 7(u;) € J for 0 < i < m. Thusif 7(v;) € J
then zug - - - um is the desired path, so assume 7(v;) ¢ J.

We also induct on the rank of C; if the rank is 2 the lemma is trivial,
so our induction is anchored. Now Link¢(v;) is a residually connected
complex and z,u; € Linkc(v1), so by induction on the rank of C, there
is a path £ = wg---wg = u; with 7(w;) € J for 0 < i < k. Now
T =wg- - WkU2 - Uy =y does the job.

Given geometric complexes C over J and C over J define C @ C to
be the geometric complex over the disjoint union I of J and J whose
geometry is ' ® I and with chamber set {CUC : C € C,C € C}.

The basic diagram for a geometric complex C over I is the graph on I
obtained by joining distinct %, j in I if for some simplex T of type {1, j}'
(including @ if |I| = 2), Linke(T) is not a generalized digon. The basic
diagram of a geometry is the basic diagram of its flag complex.

Diagrams containing more information can also be associated to each
geometry or geometric complex. The study of such diagrams was initi-
ated by Tits [T1] and Buekenout [Bu].

A graph on I is a string if we can order I = {1,...,n} so that the
edges of I are {i,1+ 1}, 1 <4 < n. Such an ordering will be termed a
string ordering. A string geometry is a geometry whose basic diagram
is a string. Most of the geometries considered in Sporadic Groups are
string geometries; for example:
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Example (10) The basic diagram of projective geometry is a string.

Lemma 4.7: Assume C is a residually connected geometric complex such
that I = I, + Iy is a partition of I such that I} and I3 are unions of
connected components of the basic diagram of I. Then C = C! ®C?,
where C* consists of the simplices of type I;.

Proof: We may assume I; # & for i = 1,2. By definition of the basic
diagram, the lemma holds if " is of rank 2. Thus we may assume I; has
rank at least 2. Let z; € I'; by 4.6 there exists a path ] = vg - - - vy = T2
with 7(v;) € I for i < m. Choose this path with m minimal; if m =1
for each choice of z; we are done, so choose z; such that m is minimal
subject to m > 1. Then of course m = 2, so z; € Linkc(v1). But by
induction on the rank of ', z; is incident with z in Linkc(v;), and
hence also in T'.

The proof of the following result is trivial:

Lemma 4.8: IfC is a geometric complez then the following are equiva-
lent:

(1) All flags of T' are simplices.
(2) Linkc(S) =T(S) for each simplez S of C.

Lemma 4.9: Assume C is a residually connected geometric complex such
that the connected components of the basic diagram of C are strings. Then
all flags of C are simplices.

Proof: Assume not and let T' be a flag of minimal rank m which is not
a simplex. As C is a geometric complex, m > 2. Pick a string ordering
for I and let T = {z;,... ,zm} with 7(z;) < 7(zi41). Let z = zo. By
minimality of m, {z1,z} and {z2,... ,zm} are simplices. Further by 4.7,
Linke(z) = C! & C2, where C! is the subgeometry on I;, I} = {1}, and
I = {3,...,n}. Thus {z1,z3,...,Zm} is a simplex in Link¢(z), so T
is a simplex of C.

Lemma 4.10: Let G be a group and F = (G; : i € I) a family of
subgroups of G, and assume C = C(G, F) is residually connected. Then
the following are equivalent:

(1) G is flag transitive on I'(G, F).

(2) Each flag of T'(G,F) is a simplex.

(8) T(Sy) = Linke(Sy) 2T(Gy,Fy) for each J C I.

Proof: By 4.5.2 and 4.8, (2) and (3) are equivalent. As G is transitive
on simplices of C of type J for each J C I, (1) and (2) are equivalent.



5. The general linear group and its projective geometry

Theorem 4.11: Let G be a group, I = {1,... ,n}, and F = (G; : i € I)
a family of subgroups of G. Assume
(a) C(G,F) is residually connected; that is, Gy = (F;) for all J C I.
(b) The diagram of C(G, F) is a union of strings; that is, (Gi/,Gj) =
Gy Gj for alli,j € I with |i —j| > 1.
Then
(1) G is flag transitive on I'(G, F).
(2) T(S;)=T(Gy,Fy) forallJ C I.

Proof: This follows from 4.9 and 4.10. Use 4.5 to see that the condi-
tions of (a) are equivalent and 4.2 to see that the conditions of (b) are
equivalent.

5. The general linear group and
its projective geometry

In this section F' is a field, n is a positive integer, and V is an n-
dimensional vector space over F. Recall that the group of vector space
automorphisms of V is the general linear group GL(V'). We assume the
reader is familiar with basic facts about GL(V'), such as can be found
in Section 13 of [FGT)]. For example, as the isomorphism type of V de-
pends only on n and F', the same is true for GL(V'), so we can also write
GLy(F) for GL(V).

Recall that from Section 13 in [FGT] that each ordered basis X =
(z1,... ,zn) of V determines an isomorphism My of GL(V) with the
group of all nonsingular n-by-n matrices over F defined by Mx(g) =
(9ij), where for g € GL(V), g;; € F is defined by ;g = EJ- 9i;z;. Thus
we will sometimes view GL(V) as this matrix group.

We write SL(V) or SLy(F') for the subgroup of matrices in GL(V) of
determinant 1. Thus SL,(F) is the special linear group. As the kernel
of the determinant map, SL,(F') is a normal subgroup of GL,(F).

A semilinear transformation of V is a bijection g : V — V that pre-
serves addition and such that there exists o(g) € Aut(F') such that for
each a € F and v € V, (av)g = ao(g)v. Define I' = ['(V) to be the set
of all semilinear transformations of V. Notice the map o : ' — Aut(F)
is a surjective group homomorphism with kernel GL(V') and I'(V') is the
split extension of GL(V') by the group {fo : @ € Aut(F)} & Aut(F) of
field automorphisms determined by the basis X of V, where

fa: Zai:ti — Z(aia)xi.

13
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Notice also that ['(V) permutes the points of the projective geometry
PG(V) and this action induces a representation of I'(V)) as a group
of automorphisms of PG(V) with kernel the scalar matrices. Thus the
image PT'(V) is a group of automorphisms of PG(V') which is the split
extension of PGL(V') by the group of field automorphisms.

If F = GF(q) is the finite field of order ¢ we write GLn(q) for GLn(F),
SLy(q) for SLn(F), PGLy(q) for PGLy(F), and Ln(g) = PSLn(q) for
PSLy(F).

See Section 13 in [FGT] for the definition of the transvections in
GL(V) and properties of transvections.

Lemma 5.1: Let G = PGL(V), S = PSL(V), and H the stabilizer in
G of a point p of PG(V). Assume n > 2. Then

(1) H is the split extension of the group Q of all transvections of V
with center p by the stabilizer L of p and a hyperplane U of V
complementing p.

(2) Q=U,L=GL(U), and the action of L by conjugation on Q is
equivalent to the action of L on U.

(8) Q is the unique minimal normal subgroup of HN L.

Proof: Let G = GL(V) and regard G as a group of matrices relative to
a basis X for V such that p = (z;). Then the preimage H of H in G

consists of all matrices
- (a(g) 0 )
a(g) Alg)

with a(g) € F#, a(g) a row matrix, and A(g) € GL(U). Moreover
Q consists of the matrices g with a(g) = 1 and A(g) = I, while L
consists of all matrices h with a(h) = 0. Further g" € Q with a(gh) =
a(h)A(h)"la(g). In particular H is the split extension of Q by L, and
Q 2 U is abelian. Further L= Lo x K, where K is the group of scalar
matrices and Lg consists of those h € f, with a(h) = 1. Thus the image
L of L in G is isomorphic to Ly & GL(U), and the action of L by
conjugation on H is equivalent to the action of L & Ly on U £ Q.

So (1) and (2) are established. Finally as the action of L on Q is
equivalent to its action on U, L (and even LNS) is faithful and irreducible
on @, so @ is minimal normal in H. Now if M is a second minimal normal
subgroup of H, then (M,Q) = M xQ,so M < Cyg(Q) and MNQ =
1. But as H = LQ with L faithful on Q, @ = Cg(Q), contradicting
MnQ=1.

The projective plane over the field of order 4 will be the starting point



