o

—
=
okt
pm e
e
oc
-
b

Introduction to

bosPascal and Software Design

FOURTH EDITION

Nell Dale

University of Texas, Austin

Chip Weems

University of Massachusetts, Amherst

Jones and Bartlett Publishers
Sudbury, Massachusetts

Boston London Singapore

Editorial, Sales, and Customer Service Offices
Jones and Bartlett Publishers

4(0) Tall Pine Drive

Sudbury, MA 01776

508-443-5000

info@jbpub.com

http://www.jbpub.com

Jones and Bartlett Publishers International
Barb House, Barb Mews

London W6 7PA

UK

Photo credits: page 14, Eidgenossiche Technische Hochshule (ETH), Zurich, Switzerland; page 16 (top, middle r, bottom,
1-r), page 17 (top, bottom 1) page 21 (bottom), page 23 (top 1, middle 1), page 142, Courtesy IBM; page 16 (middle 1), page
17 (bottom), Courtesy of Hewlett-Packard Company; page 21 (top), Courtesy Digital Equipment Corporation; page 22,
Cameramann International; page 23 (top r, bottom r), Courtesy Apple Computer, Inc.; page 23 (middle r) Courtesy Sun
Microsystems, Inc.; page 23 (bottom 1), Courtesy Thinking Machines Corporation. Photo: Steve Grohe; page 134, Courtesy
of BASF; page 189, The Image Works © Topham; page 282, Culver Pictures; page 374, The Bettmann Archive; page 471,

Courtesy of the U.S. Navy.

Copyright © 1998 by Jones and Bartlett Publishers, Inc., © 1995 by D.C. Heath and Company

Previous Editions copyright © 1988 and 1992 by D.C. Heath and Company

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopy, recording, or any information storage or retrieval system, without permission in writing

from the publisher.
ISBN 0-7637-0608-6

Library of Congress Catalog Card Number: 94-70364

Printed in the United States of America
00 99 98 1009 87 65 4 3

This book is dedicated to you,

and to all of our other students for whom it was begun and
without whom it would never have been completed.

Turbo Pascal, Fourth Edition Program Disk

Jones and Bartlett Publishers offers free to students and instructors a program disk with all the
complete programs found in Turbo Pascal, Fourth Edition. The program disk is available through the
Jones and Bartlett World Wide Web site on the Internet.*

Download Instructions

1. Connect to the Jones and Bartlett student diskette home page
(http://www.jbpub.com/disks/).

2. Choose Turbo Pascal, Fourth Edition.
3. Follow the instructions for downloading and saving the Turbo Pascal, Fourth Edition.

4. If you need assistance downloading a Jones and Bartlett student diskette, please send
email to help@jbpub.com.

Downloading the Turbo Pascal, Fourth Edition program disk via the Jones and Bartlett home page
requires access to the Internet and a World Wide Web browser, such as the Netscape Navigator or
Microsoft Internet Explorer. Instructors at schools without Internet access may call 1-800-832-0034
and request a copy of the program disk. Jones and Bartlett grants adopters of Turbo Pascal, Fourth
Edition the right to duplicate copies of the program disk or to store the files on any stand-alone

computer or network.

Since its debut in 1983, Introduction to Pascal and Structured Design has led the
field in introducing new topics and pedagogy because, when revising the text, our
philosophy is to be proactive rather than reactive. We consistently set trends rather
than follow them. As always, our efforts are directed toward making the sometimes
difficult concepts of computer science more accessible to all students. The fourth edi-
tion of the Turbo version contains many new topics, but the new material is valueless
1f 1t 18 not presented in a way that students can understand—and use.

The previous editions of this book have been widely accepted as model text-
books for the ACM-recommended curriculum for CS1 and the Advanced Placement
A exam 1n computer science. We believe that this edition also will become a model. It
reflects our view of the future direction of computer science education—with more
rigor, more theory, greater use of abstraction, and the application of software engi-
neering principles throughout the programming process.

Special Sections

[n this fourth edition we continue to use boxed sections to emphasize important con-
cepts. The Theoretical Foundations boxes contain material that, although not essen-
tial to achieving the goals of the text, is fundamental information that every computer
science major should know. These sections include such topics as data representa-
tion, finite state machines, methods of parameter passing, and complexity of algo-
rithms.

Even though software engineering principles are integrated throughout the book,
we use Software Engineering boxes to reemphasize special points. For example, the
importance of using named constants is reinforced with a boxed discussion.

We feel strongly that our students should be aware of the contributions made to
our field by previous generations. Thus we have included biographies of such people
as Blaise Pascal, Ada Lovelace, and Grace Murray Hopper in sections called May We
Introduce.

Changes in the Fourth Edition
The changes in this revision have been driven by three major factors.

Turbo Pascal has become more of a standard than the ISO standard.
Programmers are using a more modern approach to the classification of data types.

viii Preface

Our belief that it is imperative to introduce and emphasize abstraction to the next
generation of computer science students early in the curriculum.

In previous editions of Turbo Pascal, we introduced the Turbo extensions with the
warning that it is better to use the standard when possible. Our philosophy has
changed with this edition—the nonstandard Turbo features, the unit and the string,
are essential to modern computer science theory and software engineering practice. It
1s ironic that almost all Pascal compilers have these extensions; only the ISO standard
does not. Therefore we emphasize these features rather than warn against their use,
although we continue to point out which constructs are not ISO standard.

We have grouped the nonstructured composite types (the record and the set) to-
gether. Records traditionally have been viewed as a structured type and covered fol-
lowing arrays. Records are structured from the compiler writer’s view because a base
address and offset method are used to implement them. However to the user of the
record data type it 1s unstructured. The order in which the fields are declared can be
changed, and it does not affect the code because the fields are accessed by name. An
advantage of introducing records before arrays is that access by name is easier to
comprehend than the indirect access used with arrays.

We have grouped the structured composite types (the file and the array) together.
Files and arrays are conceptually very similar; they differ only in their access meth-
ods. For some reason students have trouble with files. (One of us grades advanced
placement computer science exams and can attest to this fact.) We hope that by
grouping files with arrays and making their similarities and differences explicit, we
can clarify this problem area for students.

We also have moved the chapter on units from the end of the book to the chapter
immediately following the introduction of the built-in Pascal composite types. Thus
Instructors now can use units to demonstrate information hiding and data encapsula-
tion throughout the balance of the text.

The modifications in this edition are so sweeping that we have changed the name
of the book to Introduction to Turbo Pascal and Software Design. The new title re-
flects the change in emphasis in the second half of the book from solving one-time
problems using structured design to creating general-purpose software modules that
can be used in a variety of problem solutions. The top-down design of a problem now
interfaces with these previously created and tested modules.

W

SYNOPSIS

Chapter 1 1s designed to create a comfortable rapport between the student and the
subject. The basics of hardware and software are presented, and problem-solving
techniques are discussed and reinforced in a Problem-Solving Case Study. We have
added a section on ethics to round out this introduction.

Because of the increased emphasis on Turbo Pascal features, the old Chapter 2
has been reorganized into two chapters. In the new Chapter 2, we introduce strings as
the first data type that students use and show them how to concatenate and output
strings. Then in Chapter 3 we introduce numeric data types and operations, thus giv-

ing the students a powerful set of tools that allows them to write more interesting pro-
grams from the beginning.

Top-down design methodology and input are covered in Chapter 4. To rein-
force the discussion of strings, Turbo string input is discussed in detail. We intro-
duce Boolean expressions and the IF statement in Chapter 5 and looping with the
WHILE statement in Chapter 6. Although many instructors prefer to cover all the
looping statements together, we believe that the theory of loops is more important
than the syntax and that the theory can best be emphasized by using only one syn-
tactic construct. In both Chapters 5 and 6, we stress the theory of flow of control
represented in the selection and iteration constructs rather than the syntax of the
constructs themselves. Pre- and post-conditions are covered in Chapter 5 and loop
invariants in Chapter 6.

The next three chapters are devoted to designing and writing subprograms. Built-
in procedures and functions are introduced in Chapter 1 and referred to in each subse-
quent chapter. By Chapter 7, students are quite comfortable with using subprograms
and receptive to the idea of writing their own. Chapter 7 covers flow of control in
procedures, formal and actual parameters, local variables, and interface design.
Chapter 8 expands the discussion to consider value parameters, nested scope, stubs
and drivers, and more on interface design. Chapter 9 describes user-defined func-
tions, with a brief discussion of recursion. Because of Chapter 9’s numerical orienta-
tion, we also discuss the problems of representation and precision associated with
real numbers.

Chapters 1 through 9 emphasize control abstraction. Chapters 11 through 17 fea-
ture data abstraction. Chapter 10 provides the transition by formalizing the concept of
a data type, discussing ordinal and scalar data types along with the operations pro-
vided for them, and showing students how to create user-defined data types. Because
the CASE statement and the FOR statement require the use of ordinal data types, we
have introduced the rest of the control structures in this chapter. CASE, FOR and RE-
PEAT/UNTIL are the “ice cream and cake” of the control structures—nice to have,
but not necessary.

We begin Chapter 11 with a discussion of composite data types and the distinc-
tion between unstructured and structured data types. We introduce the set and the
record—Pascal’s built-in, unstructured composite data types. We believe that the
array traditionally has been introduced before the record because FORTRAN didn’t
have records. When the first Pascal texts came out, they were modeled on FORTRAN
texts, and the new Pascal material was put at the end. This placement is artificial; ac-
cess by name is more natural for students than access by index.

We group the structured composite data types, the file and the array, together in
Chapter 12. Files and arrays are conceptually very similar; they differ only in their
access methods. We discuss their similarities and differences in detail and give guide-
lines for when each is appropriate.

After the introduction of arrays the focus shifts from the syntax and semantics of
the composite data types to their use in defining abstract data types. Because we al-
ready have introduced record and array, we can clearly differentiate the concepts of
array and list from the beginning. The array is a built-in, fixed-sized data structure.
The list is a user-defined, variable-sized structure represented by a length and an

Preface

IX

X Preface

array of items bound together in a record. The elements 1n the list are those elements
in the array from the first position through the length position.

In the last decade the topic of data structures has become subsumed under the
broader topic of abstract data types (ADTs)—the study of classes of objects whose
logical behavior 1s defined by a set of values and a set of operations. The term data
structures refers to the implementation of data objects within a program; that is, the
implementation of structured relationships. The term abstract data type refers to a
collection of data values and operations in which operations are described by their
logical behavior, not their implementation. The shift in emphasis from data structures
to abstract data types 1s representative of the move towards more abstraction in com-
puter science education. We believe that this shift is a crucial one, and it has driven
the reorganization of the second half of this book.

Thus we define abstract data types in Chapter 13 and emphasize them throughout
the balance of the book. We use the design of the unordered list as a way to guide the
presentation of the algorithms on lists. In Chapter 14 we introduce the unit as a way
for encapsulating our abstract data types, procedural parameters as a vehicle for more
generality, and use an auxiliary unit as a technique for creating generic abstract data
types. It 1s 1ronic that Standard Pascal always has allowed procedures and functions
to be passed as parameters, but because Turbo Pascal—the compiler that most stu-
dents use—has not had this feature, we (and most other authors) have not covered it.
Turbo Pascal now supports procedural parameters.

In keeping with the move toward more abstraction, we introduce the object data
type in great detail in Chapter 16 as an additional encapsulation mechanism. The pro-
gression from abstract data type encapsulated within a unit to the object data type in
which the operations are bound within the object 1s smooth and logical. We end this
chapter with a discussion of object-oriented design and programming.

The pointer data type, referenced variables, and dynamic data structures are cov-
ered in Chapter 17. To reinforce the concepts of abstraction, we replace the array-
based implementation of the ordered list ADT with a linked implementation without
changing the interface section of the unit encapsulating it. We also discuss a linked
list of objects.

Chapter 18 covers recursion. There 1s no consensus as to the best place to cover
this subject. We believe that it 1s better to wait until at least the second semester to
cover this topic. However, we have included recursion for those instructors who have
requested 1t. We divide the examples into two parts: those that require only simple
data types, and those that require structured data types. Professors can cover the first
part after Chapter 9. The second part contains examples from simple lists to binary
trees. Instructors may use these examples individually after the appropriate chapter
(for example, simple arrays after Chapter 12) or as a group after Chapter 17.

Chapter 19 covers graphics, the subject that is often the most popular with stu-
dents. As with recursion, no consensus exists on when to introduce graphics or even
1f the topic should be covered in an introductory course. We thus have written Chap-
ter 19 in a similar manner to Chapter 18. Most of the material may be assigned at any
point after Chapter 2. The remainder of the graphics coverage depends on an under-
standing of two-dimensional arrays and may be used at any point after Chapter 15.

Additional Features

Goals Each chapter begins with a list of learning objectives for the student. These
goals are reinforced and tested in the end-of-chapter exercises.

Problem-Solving Case Studies Problem solving is best demonstrated through case
studies. In each case study we present a problem and use problem-solving techniques
to develop a manual solution. Next we expand the solution to an algorithm, using
modular design methodology, and then we code the algorithm in Pascal. We show
simple test data and output and follow up with a discussion of what 1s involved in
thoroughly testing the program.

Testing and Debugging Following the case studies in each chapter, this section
considers in depth the implications of the chapter material with regard to thorough
testing of programs. The section concludes with a list of testing and debugging hints.

Quick Checks At the end of each chapter are questions that test the student’s recall
of major points associated with each chapter goal. Upon reading each question, the
student immediately should know the answer, which he or she can then verify by
glancing at the answers at the end of the section. The page number on which the con-
cept is discussed appears at the end of each question so that the student can review the
material in the event of an incorrect response.

Exam Preparation Exercises These questions help the student prepare for tests.
The questions have objective answers and are designed to be answerable with a few
minutes of work. Answers to selected questions are given in the back of the book, and
the remaining questions are answered 1n the Instructor’s Guide.

Programming Warm-Up Exercises This section provides the student with experi-
ence in writing Pascal code fragments or procedures. The student can practice the
syntactic constructs in each chapter without the burden of writing a complete pro-
gram. Solutions to selected questions from each chapter appear in the back of the
book; the remaining solutions may be found in the Instructor’s Guide.

Programming Problems We have included specifications for problems from a
wide range of disciplines in these exercises, which require the student to write com-
plete programs.

Case Study Follow-Up A new kind of exercise in the fourth edition, Case Study
Follow-Up questions require the student to analyze or modify the case studies in the
chapter. These exercises afford experience in reading and understanding the docu-
mentation and code for an existing program.

Supplements

Instructor’s Guide Prepared by the authors, the Instructor’s Guide features teach-
Ing notes, answers to the balance of the exercises, a carefully worked-out solution
and discussion for one programming problem per chapter, and an example of an ad-

Preface B

Xi

Xii Preface

vanced placement exam question, with a sample solution and the actual grading
rubrics used by the AP exam graders.

Test Item File The Test Item File includes more than 1,300 test questions patterned
after those in the Exam Preparation Exercises. Also available on request from the
publisher is an electronic version of the Test Item File, in IBM PC format.

Transparency Masters Enlargements of many figures in the text and the code for
the case studies are available for use in lecture presentations.

Program Disk The program disk available through the Jones and Bartlett web site
contains all the programs in the text. Please see the instructions for downloading this

disk on the page preceding the Preface.

A Laboratory Course for Turbo Pascal Available separately, this laboratory man-
ual parallels Introduction to Turbo Pascal and Software Design in either an open or
closed lab setting. It was written to help students master Turbo Pascal syntax through
guided exercises, each within the context of a complete program. Having mastered the
language syntax, students can then concentrate on problem-solving and algorithmic
design. Each chapter 1s divided into three parts: Prelab, Inlab, and Postlab. The ac-
companying disk contains the programs, program shells (partial programs), and data
files.

Casebook for Turbo Pascal This supplement contains a variety of new case stud-
ies that are of interest to students such as designing a recording studio, analyzing text,
simulating traffic at an intersection, and forecasting a card game.

Acknowledgments

We would like to thank the many individuals who have helped us in the preparation
of this fourth edition. We are indebted to the members of the faculties of the Com-
puter Sciences Departments at the University of Texas at Austin and at the University
of Massachusetts at Amherst.

From among our colleagues, we are especially gratetul to Suzy Gallagher and
Diane Law at Austin, and W. Richards Adrion, Carla Bradley, and Conrad Wogrin at
Ambherst. We extend special thanks to Jeff Brumfield for developing the syntax tem-

plate metalanguage and allowing us to use it in the text.
For their many helpful suggestions, we thank the lecturers, teaching assistants,

consultants, and student proctors who run the courses for which this book was writ-
ten, and the students themselves.

We are grateful to the following people who took the time to review our manu-
script: Dr. William E. Ayen, Colorado Tech; Larry Crockett, Augsburg College; Jack
N. Donato, Jetterson Community College; Merrell R. Jones, Southern Utah Univer-
sity; James Roberts, Charleston Southern University; David R. Thomas, Texas
A&M—Corpus Christi; and Andrew Townsend, Mira Costa College.

Anyone who has ever written a book—or is related to someone who has—can
appreciate the amount of time involved 1n such a project. To our families—all the

Preface Xiii

Dale clan and extended Dale family (too numerous to name), and to Lisa, Charlie,

and Abby—thanks for your tremendous support and indulgence.
N.D.

C.W.

| Overview of Programming and Problem Solving I

2 Pascal Syntax and Semantics, and the Program
Development Process 41

3 Numeric Types, Expressions, and Output 8l
4 Input and Design Methodology 121

5 Conditions, Boolean Expressions, and Selection Control
Structures 169

6 Looping 22]
7 Procedures 275
8 Value Parameters, Nesting Procedures, and More on

Interface Design 317

9 Functions, Precision, and Recursion 365

10 Simple Data Types and Additional Control Structures
405

Il Unstructured Composite Data Types: Sets and Records
453

12 Structured Composite Data Types: Files and Arrays 501
I3 Abstract Data Types, Lists, and Strings 553

14 Encapsulation Methods: Procedural Parameters and Units
601

15 Multidimensional Arrays and Table Processing 665

16 Objects and Object-Oriented Design and Programming
713

|7 Pointers and Dynamic List Structures 767

I8 Recursion 847
19 Graphics: Another Form of Output 881

XVi Brief Contents

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

Appendix H
Appendix |
Appendix }

Reserved Words Al

Standard ldentifiers Al

Pascal Operators and Symbols A5
Precedence of Operators Ab
Syntax Templates and Syntax Diagrams
Compiler Error Messages A22

Program Style, Formatting, and
Documentation A29

Additional Features of Pascal A37
The ASCII Character Sets A42

A Graphical Tour of the Turbo Pascal
Integrated Development Environment

Glossary A93
Answers to Selected Exercises Al05

Index Al59

A7

A43

d F'i,-:- - | = ||‘r i -II L ’I. ¥ |

ar | W | i TN e

i\l T o : ™ ¥ L!."L:‘
| =i ” |
- r i . T R ,F.-N 1 :I. L
" R . , 1= e {20
r ! I .
|

| Overview of Programming and Problem
Solving P.
Overview of Programming 2
What is Programming? 2
How Do We Write a Program? 3
What is a Programming Language? 7

Theoretical Foundations: Binary Representation of Data 8

What is a Computer? |2

Background Information: The Origins and Features of
Pascal 14

Ethics and Responsibilities in the Computing
Profession /8

Software Piracy 19

Privacy of Data 19

Problem-Solving Case Study: An Algorithm for a Company
Payroll 20

Use of Computer Resources 24
Software Engineering 25
Problem-Solving Techniques 26
Ask Questions 26

Look for Things That Are Familiar 26
Solve by Analogy 27

Means-Ends Analysis 28

Divide and Conquer 28

The Building-Block Approach 29
Merging Solutions 29

XViii Table of Contents

Mental Blocks: The Fear of Starting 29
Algorithmic Problem Solving 31

v

Background Information: PDAs, PCs, Workstations. Minis

and Mainframes
Summary 36

Quick Check 37 / Exam Preparation Exercises 38 / Programming Warm-up Exercises 39 /
Case Study Follow-up 40

2 Pascal Syntax and Semantics, and the Program
Development Process 4|
The Elements of Pascal Programs 42

Syntax and Semantics 42

Syntax Templates 42

Naming Program Elements: Identifiers 44

Data and Data Types 45

Theoretical Foundations: Metalanguages 46

Defining Terms 49

Matters of Style: Usin g Meaningful, Readable Identifiers
Background Information: Data Storage 52

Taking Action: Executable Statements 54

Background Information: The Size of Values in Memor
Beyond Minimalism: Adding Comments to a Program 59
Program Construction 60

Compound Statements 62
Blocks 62
More About Output 63

The Write Statement 63
Formatting Output 65

The Program Implementation Process 66
Problem-Solving Case Study: Contest Letter 69
Testing and Debugging 73

Summary 74

Quick Check 75 / Exam Preparation Exercises 76 / Programming Warm-Up Exercises 79 /
Programming Problems 79 / Case Study Follow-Up 80

Table of Contents XiX

3 Numeric Types, Expressions, a nd Output 8 |
Numeric Data Types 82
Integer 82
Real &3
Numeric Type Declarations 84
Named Constant Declarations 34
Variable Declarations 84
Simple Arithmetic Expressions 86
Software Engineering . . . Using Named Constants ins tead

of Literals 89

May We Introduce . . . Blaise Pascal 92
Compound Arithmetic Expressions 93
Precedence Rules 93

Functions 94

Formatting Output 96

Integers 96

Strings 98

Real Numbers 99

Additional Features of Strings 100
Declaring Strings with a Specific Size 100

String Functions 101
Converting Numeric Values into Strings 103

Matters of Style: Program Formatting 104

Software Engineering: Correcting Errors in a Program | 06
Problem-Solving Case Study: Map Measurements 10/
Testing and Debugging 110

Summary o,

Quick Check |11 / Exam Preparation Exercises |13 / Programming Warm-Up Exercises
116 /| Programming Problems |18 / Case Study Follow-up 119

4 Input and Design Methodology | 2 |
Input and Design Methodology 122

