=
=
=

TRALRGHE

(SRR - SB2hR)

INTERNATIONAL EDITION

yale n. palt
sanjay |. parel

Infroduction fo
compuling sustems

from bits & gates o C & begond e

McGRAW-HILL

Yale N. Patt
(&) AT R F R T8
Sanjay J. Patel
FRHIERAXZEBH- MBS

Mo Ik ﬁ iR #t Mc .
China Machine Press ﬁﬁfw Educatiol

it RG#hE

(ZR3ZIR - SB2hR)

_Yale N. Patt
() BRFEAFRFTHR
~ Sanjay J. Patel
FHEFAEEEA-HRBNE

Yale N. Patt and Sanjay J. Patel: Introduction to Computing Systems: From Bits and Gates
to C and Beyond, Second Edition (ISBN 0-07-246750-9).

Copyright © 2004, 2001 by the McGraw-Hill Companies, Inc.

Original language published by The McGraw-Hill Companies, Inc. All rights reserved. No
part of this publication may be reproduced or distributed in any means, 6r stored in a database or
retrieval system, without the prior written permission of the publisher.

Authorized English language reprint edition jointly published by McGraw-Hill Education
(Asia) Co. and China Machine Press. This edition is authorized for sale in the People’s Republic
of China only, excluding Hong Kong, Macao SARs and Taiwan. Unauthorized export of this
edition is a violation of the Copyright Act. Violation of this Law is subject to Civil and Criminal
Penalties.

FHE IR A T BRI R EE N - A/ REF HR (EH) A7 A%
HAR. HRANREREARLMERAN (FEEEE, RITFITBEEREGE) #E.
FEHA 2O, MABREERE, BTEEZHE.

REHREBAEBEER, FEUMEMFREFRDEEBHEMEY .

AA5E G McGraw-Hill2s BB 0458, TAREE N EHE.

RS, R,
FHERmME StRHRAENESA

AHIFNEIZES: EF. 01-2006-3885
BEBEREE (CIP) MR

HEVLALMS (FESCRR - F2/K) / (32) take (Patt, Y. N.) F2E. — b3t LR
TrHifR*E, 2006.9

(Z2HBRBE)
454 83X : Introduction to Computing Systems: From Bits and Gates to C and Beyond,

Second Edition
ISBN 7-111-19766-6

I.if O.ig- O HEHLES-%X V. TP30
i [i A B 1R CIPE A - (2006) 350966475

FUR Tk AR AL Gsemdasgix & 5 Af225 WREcgEg 100037)
TSR RIRE

AL FCECALFIRREN R ENR] - FraEHEILR RITHRELT
2006429 A 2 1R 1R ENRY

170mm x 242mm + 412518k

& 66.007C

JLAS, A, B, B, maEdRTEiRk
ARk, (010) 68326294

{BhRE 8318

XEE LU, FER-KAORSEEENE D R EANE, HE5ERKERFE
LA TS T2 ENRY, BERXHENES, EXEEEREARRNAT
LEMARKEN., AR, EFLAAERS, XENTLASHERBREERH
g4, HENEARPWIF LR L) F SR B FEARATL, HILmEENS M
B, AOUERNTHRTEN, CRETFARANWIESE, REBERNE, XEAE
A, M EHASEEANRE TR,

W, ELRERMAKXENHEDT, REMNITEIZLEBRE, & AFHE
RKAZFAL, XN EVETRAHERHERNE, bRk, ¥ hEHRikeE
FEikis LEEERERE. CREFEHEARRENEEE. MILA RELCHIBRT, £
HEREEREXTEIA 2RI TERARENSEZEH DA T SEBEEZL.
Ht, Sldt—#EIMEF HEYLEA B R E T EIAT R LR B R e,
HESHREH., BiEEENER—RXFHBHZE,

LB T HARA R ESUE B A MRA SR EERE “WREBEAKERS. BH19984F
Froh, REATRE LEEARE T #E, BIEEIMEEM L. @ JLENTRE T,
#{15Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZsi53# 4 H
MARBEMLTRANEGIERR, WNEMAEEE F 4 P ik HTanenbaum,
Stroustrup, Kernighan, Jim Gray% Kfi#x f—HLMERS, LI “HEILBZAE" 2
C OBFRMAR, SHEEEE]. MREER. KEAOSENERE, hEAR T XEMNBR R
Fds A

“TFEVLEHEMNE R TIESE TENMEER DD, BRNER AL
THEREEES, AR FHAESE TEIEMERATIE, mEBRES A2 RE
HEREREAEER, AEEEALBNFERER. j.fa:é,\, “TRIBHEMNE BEL
HAR TIEE A SR, XEPFEEEEPMT TRFVDORB, HEFLEREFEASERE
MHMEBZREFE, - 5ERBRITT TRLAER.

FiE R IR O S E MBS R WRL, BERESNTENBEM TR
R R A—AFINBR. ik, REAFTHEMASIERMODE, £ “REHET”
FEHEZ T HREA 2T EILEM . B “TPEIRSEANE 200, SRENRRIE
M, MBI “SHFERBE" , B, SIHLRBTHOEEHE I “Schaum’s
Outlines” RFIHK “LELMEIEFRI. ATRIEX=FENEHIREME, FK b
AT B FERFIEMARS , A TBIET hEREE. bRk, BERE.
ESEHE RS, EERSY. REGRKS. xR, ke, FEREKRE. BR

iv

ETKRE, EEREARE. PEARKE, bFEMEMRASE, dcxapiks, Hil
K%, BREBET RS, BMAE, WA T4k, FEEREEBXLNIENTEFLEFR
NERKFARTIAETEILNE NGB ELZEAR “FXRBRIERSE", AN
REEEELMHRKE.

REENBRAEEE R HPEAIMNRBABISHE, HENERTEILEAER
EVHBEESITEN. EPiFL£EHHEAM. L. T., Stanford, U.C. Berkeley, C. M.
U SH#HFEL2BAFERRE. TMUEETEFR. BEEH. BERK. HEIBRE
H, BIBE, mIFRE, RETR,. A%, 5%, SREFESENAS¥ITENL
TR FIEEORE, MESAARFE—ANYHABERIFEZE. FNHE=1
FEMAE, AHEHLSHERN/LEERRA, FXERREENAMAENIESZT,
BRELHEHENLAENERPHBEETAZ,

REHIEE . 2ROEM, —ROEE, MHROEEKR., HANEE, XBEEER
TMWEHRETREMRIE, BRIMNHEFRRERE, HRBEAELERRIEEX—
ARERWEERY . EMOHRRRRIOFERSHEA, LBA TR EIHFE
BB TIERHBIEA TEIE, RITWBERSTHEWOT: :

B, T8R4 ; hzjsj@hzbook.com
BAMIE: (010) 68995264

BeA#aE: AL RTERE ELEREE1S
MRECZRFD . 100037

ERIESERR

E
= - 3
FhE
Fidi R 44
B 3%
74l R
23
3

BN

(Feik R EH 6 F)

ZRLES
HEF
=Ny
i &5
&g
S
£ fa

¥ oAk
2%
=3 4y
M % 2
W
7R
A2 35

XM
XHE &
A&
Bt
SO
WA=

To the memory of my parents,

Abraham Walter Patt A"H and Sarah Clara Patt A"H,
who taught me to value “learning”

even before they taught me to ride a bicycle.

To Mira and her grandparents,
Sharda Patel and Jeram Patef.

preface

It is a pleasure to be writing a preface to the second edition of this beok. Three
years have passed since the first edition came out. We have received an enormous
number of comments from students who have studied the material in the book
and from instructors who have taught from it. Almost all have been very positive.
It is gratifying to know that a lot of people agree with our approach, and that
this agreement is based on real firsthand experience learning from it (in the case
of students) or watching students learn from it (in the case of instructors). The
excitement displayed in their e-mail continues to be a high for us.

However, as we said in the preface to the first edition, this book will always
be a “work in progress.” Along with the accolades, we have received some good
advice on how to make it better. We thank you for that. We have also each taught the
course two more times since the first edition came out, and that, too, has improved
our insights into what we think we did right and what needed improvement. The
result has been a lot of changes in the second edition, while hopefully maintaining
the essence of what we had before. How well we have succeeded we hope to soon
learn from you.

Major Changes fo the First Edifion

The LC-3

One of the more obvious changes in the second edition is the replacement of the
LC-2 with the LC-3. We insisted on keeping the basic concept of the LC-2: a
rich ISA that can be described in a few pages, and hopefully mastered in a short
time. We kept the 16-bit instruction and 4-bit opcode. One of our students pointed
out that the subroutine return instruction (RET) was just a special case of LC-2’s
JMPR instruction, so we eliminated RET as a separate opcode, The LC-3 specifies
only 15 opcodes—and leaves one for future use (perhaps, the third edition!).

We received a lot of push-back on the PC-concatenate addressing mode,
particularly for branches. The addressing mode had its roots in the old PDP-8 of
the mid-1960s. A major problem with it comes up when an instruction on one page
wants to dereference the next (or previous) page. This has been a major hassle,
particularly for forward branches close to a page boundary. A lot of people have
asked us to use the more modern PC+offset, and we agreed. We have replaced all
uses of PC’offset with PC+SEXT (offset).

We incorporated other changes in the LC-3. Stacks now grow toward 0,
in keeping with current conventional practice. The offset in LDR/STR is now

viii

preface

a signed value, so addresses can be computed plus or minus a base address.
The opcode 1101 is not specified. The JSR/TMP opcodes have been reorganized
slightly. Finally, we expanded the condition codes to a 16-bit processor status
register (PSR) that includes a privilege mode and a priority level. As in the first
edition, Appendix A specifies the LC-3 completely.

Additional Material

Although no chapter in the book has remained untouched, some chapters have
been changed more than others. We added discussions to Chapter 1 on the nature
and importance of abstraction and the interplay of hardware and software because
it became clear that these points needed to be made explicit. We added a full
section to Chapter 3 on finite state control and its implementation as a sequential
switching circuit because we believe the concept of state and finite state control
are among the most important concepts a computer science or engineering student
encounters. We feel it is also useful to the understanding of the von Neumann
model of execution discussed in Chapter 4. We added a section to Chapter 4 giving
a glimpse of the underlying microarchitecture of the LC-3, which is spelled out in
all its detail in the overhauled Appendix C. We were told by more than one reader
that Chapter 5 was too terse. We added little new material, but lots of figures and
explanations that hopefully make the concepts clearer. We also added major new
sections on interrupt-driven I/O to Chapters 8 and 10.

Just as in the first edition, Chapters 11 through 14 introduce the C program-
ming language. Unlike the first edition, these chapters are more focused on the
essential aspects of the language useful to a beginning programmer. Special-
ized features, for example the C switch construct, are relegated to the ends of
the chapters (or to Appendix D), out of the main line of the text. All of these
chapters include more examples than the first edition. The second edition also
places a heavier emphasis on “how to program” via problem-solving examples
that demonstrate how newly introduced C constructs can be used in C program-
ming. In Chapter 14, students are exposed to a new L.C-3 calling convention that
more closely reflects the calling convention used by real systems. Chapter 15
contains a deeper treatment of testing and debugging. Based on our experiences
teaching the introductory course, we have decided to swap the order of the chapter
on recursion with the chapter on pointers and arrays. Moving recursion later (now
Chapter 17) in the order of treatment allows students to gain more experience with
basic programming concepts before they start programming recursive functions.

The Simulator

Brian Hartman has updated the simulator that runs on Windows to incorporate
the changes to the LC-3. Ashley Wise has written an LC-3 simulator that runs on
UNIX. Both have incorporated interrupt-driven I/O into the simulator’s function-
ality. We believe strongly that there is no substitute for hands-on practice testing
one’s knowledge. With the addition of interrupt-driven I/O to the simulator, the
student can now interrupt an executing program by typing a key on the keyboard
and invoke an interrupt service routine.

preface

flfernate Uses of the Book

We wrote the book as a textbook for a freshman introduction to computing. We
strongly believe, as stated more completely in the preface to our first edition,
that our motivated bottom-up approach is the best way for students to learn the
fundamentals of computing. We have seen lots of evidence that suggests that in
general, students who understand the fundamentals of how the computer works
are better able to grasp the stuff that they encounter later, including the high-level
programming languages that they must work in, and that they can learn the rules
of these programming languages with far less memorizing because everything
makes sense. For us, the best use of the book is a one-semester freshman course
for particularly motivated students, or a two-semester sequence where the pace
is tempered. If you choose to go the route of a one-semester course heavy on
high-level language programming, you probably want to leave out the material
on sequential machines and interrupt-driven 1/O. If you choose to go the one-
semester route heavy on the first half of the book, you probably want to leave out
much of Chapters 15, 17, 18, and 19.

We have also seen the book used effectively in each of the following
environments:

Two Quarters, Freshman Course

In some sense this is the best use of the book. In the first quarter, Chapters 1
through 10 are covered; in the second quarter, Chapters 11 through 19. The pace
is brisk, but the entire book can be covered in two academic quarters.

One-Semester Second Course

The book has been used successfully as a second course in computing, after
the student has spent the first course with a high-level programming language.
The rationale is that after exposure to high-level language programming in the
first course, the second course should treat at an introductory level digital logic,
basic computer organization, and assembly language programming. Most of the
semester is spent on Chapters 1 through 10, with the last few weeks spent on a few
topics from Chapters 11 through 19, showing how some of the magic from the
students’ first course can actually be implemented. Functions, activation records,
recursion, pointer variables, and some elementary data structures are typically the
topics that get covered.

A Sophomore-Level Computer Organization Course

The book has been used to delve deeply into computer implementation in
the sophomore year. The semester is spent in Chapters 1 through 10, sometimes
culminating in a thorough study of Appendix C, which provides the complete
microarchitecture of a microprogrammed LC-3. We note, however, that some
very important ideas in computer architecture are not covered here, most notably
cache memory, pipelining, and virtual memory. We agree that these topics are
very important to the education of a computer scientist or computer engineer, but
we feel these topics are better suited to a senior course in computer architecture
and design. This book is not intended for that purpose.

preface

Acknowledgments

Our book continues to benefit greatly from important contributions of many, many
people. We particularly want to acknowledge Brian Hartman and Matt Starolis.

Brian Hartman continues to be a very important part of this work, both for
the great positive energy he brings to the table and for his technical expertise.
He is now out of school more than three years and remains committed to the
concept. He took the course the first year it was offered at Michigan (Winter
term, 1996), TAed it several times as an undergraduate student, and wrote the
first LC-2 simulator for Windows while he was working on his master’s degree.
He recently upgraded the Windows simulator to incorporate the new LC-3.

Matt Starolis took the freshman course at UT two years ago and TAed it as
a junior last fall. He, too, has been very important to us getting out this second
edition. He has been both critic of our writing and helpful designer of many of the
figures. He also updated the tutorials for the simulators, which was necessary in
order to incorporate the new characteristics of the LC-3. When something needed
to be done, Matt volunteered to do it. His enthusiasm for the course and the book
has been a pleasure.

With more than 100 adopters now, we regularly get enthusiastic e-mail with
suggestions from professors from all over the world. Although we realize we
have undoubtedly forgotten some, we would at least like to thank Professors
Vijay Pai, Rice; Richard Johnson, Western New Mexico; Tore Larsen, Tromso;
Greg Byrd, NC State; Walid Najjar, UC Riverside; Sean Joyce, Heidelberg Col-
lege; James Boettler, South Carolina State; Steven Zeltmann, Arkansas; Mike
McGregor, Alberta; David Lilja, Minnesota; Eric Thompson, Colorado, Denver;
and Brad Hutchings, Brigham Young.

Between the two of us, we have taught the course four more times since the
first edition came out, and that has produced a new enthusiastic group of believ-
ers, both TAs and students. Kathy Buckheit, Mustafa Erwa, Joseph Grzywacz,
Chandresh Jain, Kevin Major, Onur Mutlu, Moinuddin Qureshi, Kapil Sachdeva,
Russell Schreiber, Paroma Sen, Santhosh Srinath, Kameswar Subramaniam,
David Thompson, Francis Tseng, Brian Ward, and Kevin Woley have all served
as TAs and have demonstrated a commitment to helping students learn that can
only be described as wonderful. Linda Bigelow, Matt Starolis, and Lester Guillory
all took the course as freshmen, and two years later they were among the most
enthusiastic TAs the course has known.

Ashley Wise developed the Linux version of the LC-3 simulator. Ajay
Ladsaria ported the LCC compiler to generate LC-3 code. Gregory Muthler and
Francesco Spadini enthusiastically provided critical feedback on drafts of the
chapters in the second half,

Kathy Buckheit wrote introductory tutorials to help students use the LC-2
simulator because she felt it was necessary.

Several other faculty members at The University of Texas have used the book
and shared their insights with us: Tony Ambler, Craig Chase, Mario Gonzalez,
and Earl Swartzlander in ECE, and Doug Burger, Chris Edmundson, and Steve
Keckler in CS. We thank them.

preface

We continue to celebrate the commitment displayed by our editors, Betsy
Jones and Michelle Flomenhoft.

As was the case with the first edition, our book has benefited from exten-
sive reviews provided by faculty members from many universities. We thank
Robert Crisp, Arkansas; Allen Tannenbaum, Georgia Tech; Nickolas Jovanovic,
Arkansas—Little Rock; Dean Brock, North Carolina—Asheville; Amar Raheja, Cal
State-Pomona; Dayton Clark, Brooklyn College; William Yurcik, Illinois State;
Jose Delgado-Frias, Washington State; Peter Drexel, Plymouth State; Mahmoud
Manzoul, Jackson State; Dan Connors, Colorado; Massoud Ghyam, Southern
Cal; John Gray, UMass-Dartmouth; John Hamilton, Auburn; Alan Rosenthal,
Toronto; and Ron Taylor, Wright State.

Finally, there are those who have contributed in many different and often
unique ways. Without listing their individual contributions, we simply list them
and say thank you. Amanda, Bryan, and Carissa Hwu, Mateo Valero, Rich
Belgard, Janak Patel, Matthew Frank, Milena Milenkovic, Lila Rhoades, Bruce
Shriver, Steve Lumetta, and Brian Evans. Sanjay would like to thank Ann Yeung
for all her love and support.

A Final Word

It is worth repeating our final words from the preface to the first edition: We are
mindful that the current version of this book will always be a work in progress,
and we welcome your comments on any aspect of it. You can reach us by e-mail
at patt@ece.utexas.edu and sjp@crhc.uiuc.edu. We hope you will.

Yale N. Part
Sanjay J. Patel
May, 2003

Xi

preface fo the first edition

This textbook has evolved from EECS 100, the first computing course for com-
puter science, computer engineering, and electrical engineering majors at the
University of Michigan, that Kevin Compton and the first author introduced for
the first time in the fall term, 1995.

EECS 100 happened because Computer Science and Engineering faculty
had been dissatisfied for many years with the lack of student comprehension of
some very basic concepts. For example, students had a lot of trouble with pointer
variables. Recursion seemed to be “magic,” beyond understanding.

We decided in 1993 that the conventional wisdom of starting with a high-
level programming language, which was the way we (and most universities) were
doing it, had its shortcomings. We decided that the reason students were not
getting it was that they were forced to memorize technical details when they did
not understand the basic underpinnings.

The result is the bottom-up approach taken in this book. We treat (in order)
MOS transistors (very briefly, long enough for students to grasp their global
switch-level behavior), logic gates, latches, logic structures (MUX, Decoder,
Adder, gated latches), finally culminating in an implementation of memory. From
there, we move on to the Von Neumann model of execution, then a simple com-
puter (the LC-2), machine language programming of the LC-2, assembly language
programming of the LC-2, the high level language C, recursion, pointers, arrays,
and finally some elementary data structures.

We do not endorse today’s popular information hiding approach when it
comes to learning. Information hiding is a useful productivity enhancement tech-
nique after one understands what is going on. But until one gets to that point, we
insist that information hiding gets in the way of understanding. Thus, we contin-
vally build on what has gone before, so that nothing is magic, and everything can
be tied to the foundation that has already been laid.

We should point out that we do not disagree with the notion of top-down
design. On the contrary, we believe strongly that top-down design is correct
design. But there is a clear difference between how one approaches a design
problem (after one understands the underlying building blocks), and what it takes
to get to the point where one does understand the building blocks. In short, we
believe in top-down design, but bottom-up learning for understanding.

Xiv

preface to the first edition

What IS in the Book

The book breaks down into two major segments, a) the underlying structure of a
computer, as manifested in the LC-2; and b) programming in a high level language,
in our case C.

The LC-2

We start with the underpinnings that are needed to understand the workings of a
real computer. Chapter 2 introduces the bit and arithmetic and logical operations
on bits, Then we begin to build the structure needed to understand the LC-2.
Chapter 3 takes the student from a MOS transistor, step by step, to a real memory.
Our real memory consists of 4 words of 3 bits each, rather than 64 megabytes. The
picture fits on a single page (Figure 3.20), making it easy for a student to grasp.
By the time the students get there, they have been exposed to all the elements that
make memory work. Chapter 4 introduces the Von Neumann execution model,
as a lead-in to Chapter 5, the LC-2.

The L.C-2 is a 16-bit architecture that includes physical I/O via keyboard and
monitor; TRAPs to the operating system for handling service calls; conditional
branches on N, Z, and P condition codes; a subroutine call/return mechanism; a
minimal set of operate instructions (ADD, AND, and NOT); and various address-
ing modes for loads and stores (direct, indirect, Base+offset, and an immediate
mode for loading effective addresses).

Chapter 6 is devoted to programming methodology (stepwise refinement) and
debugging, and Chapter 7 is an introduction to assembly language programming.
We have developed a simulator and an assembler for the LC-2, Actually, we have
developed two simulators, one that runs on Windows platforms and one that runs
on UNIX. The Windows simulator is available on the website and on the CD-
ROM. Students who would rather use the UNIX version can download and install
the software from the web at no charge.

Students use the simulator to test and debug programs written in LC-2
machine language and in LC-2 assembly language. The simulator allows online
debugging (deposit, examine, single-step, set breakpoint, and so on). The sim-
ulator can be used for simple LC-2 machine language and assembly language
programming assignments, which are essential for students to master the concepts
presented throughout the first 10 chapters.

Assembly language is taught, but not to train expert assembly language pro-
grammers. Indeed, if the purpose was to train assembly language programmers,
the material would be presented in an upper-level course, not in an introductory
course for freshmen. Rather, the material is presented in Chapter 7 because it
is consistent with the paradigm of the book. In our bottom-up approach, by the
time the student reaches Chapter 7, he/she can handle the process of transform-
ing assembly language programs to sequences of Os and 1s. We go through the
process of assembly step-by-step for a very simple LC-2 Assembler. By hand
assembling, the student (at a very small additional cost in time) reinforces the
important fundamental concept of translation.

It is also the case that assembly language provides a user-friendly notation
to describe machine instructions, something that is particularly useful for the

preface to the first edition

second half of the book. Starting in Chapter 11, when we teach the semantics of
C statements, it is far easier for the reader to deal with ADD R1, R2, R3 than with
0001001010000011.

Chapter 8 deals with physical input (from a keyboard) and output (to a mon-
itor). Chapter 9 deals with TRAPs to the operating system, and subroutine calls
and returns. Students study the operating system routines (written in LC-2 code)
for carrying out physical /O invoked by the TRAP instruction.

The first half of the book concludes with Chapter 10, a treatment of stacks
and data conversion at the LC-2 level, and a comprehensive example that makes
use of both. The example is the simulation of a calculator, which is implemented
by a main program and 11 subroutines.

The Language ¢

From there, we move on to C. The C programming language occupies the second
half of the book. By the time the student gets to C, he/she has an understanding
of the layers below.

The C programming language fits very nicely with our bottom-up approach.
Its low-level nature allows students to see clearly the connection between software
and the underlying hardware. In this book we focus on basic concepts such as
control structures, functions, and arrays. Once basic programming concepts are
mastered, it is a short step for students to learn more advanced concepts such as
objects and abstraction,

Each time a new construct in C is introduced, the student is shown the LC-2
code that a compiler would produce. We cover the basic constructs of C (vari-
ables, operators, control, and functions), pointers, recursion, arrays, structures,
/0, complex data structures, and dynamic allocation.

Chapter 11 is a gentle introduction to high-level programming languages. At
this point, students have dealt heavily with assembly language and can understand
the motivation behind what high-level programming languages provide. Chapter
11 also contains a simple C program, which we use to kick-start the process of
learning C. «

Chapter 12 deals with values, variables, constants, and operators. Chapter 13
introduces C control structures. We provide many complete program examples
to give students a sample of how each of these concepts is used in practice. LC-2
code is used to demonstrate how each C construct affects the machine at the lower
levels.

In Chapter 14, students are exposed to techniques for debugging high-level
source code. Chapter 15 introduces functions in C. Students are not merely
exposed to the syntax of functions. Rather they learn how functions are actually
executed using a run-time stack. A number of examples are provided.

Chapter 16 teaches recursion, using the student’s newly gained knowledge of

functions, activation records, and the run-time stack. Chapter 17 teaches pointers

and arrays, relying heavily on the student’s understanding of hov&f memory is
organized. Chapter 18 introduces the details of /O functions in C, in particular,

preface to the first edition

streams, variable length argument lists, and how C I/O is affected by the various
format specifications, This chapter relies on the student’s earlier exposure to
physical I/O in Chapter 8. Chapter 19 concludes the coverage of C with structures,
dynamic memory allocation, and linked lists.

Along the way, we have tried to emphasize good programming style and
coding methodology by means of examples. Novice programmers probably learn
at least as much from the programming éxamples they read as from the rules they
are forced to study. Insights that accompany these examples are highlighted by
means of lightbulb icons that are included in the margins.

We have found that the concept of pointer variables (Chapter 17) is not at all
a problem. By the time students encounter it, they have a good understanding of
what memory is all about, since they have analyzed the logic design of a small
memory (Chapter 3). They know the difference, for example, between a memory
location’s address and the data stored there.

Recursion ceases to be magic since, by the time a student gets to that point
(Chapter 16), he/she has already encountered all the underpinnings. Students
understand how stacks work at the machine level (Chapter 10), and they under-
stand the call/return mechanism from their LC-2 machine language programming
experience, and the need for linkages between a called program and the return to
the caller (Chapter 9). From this foundation, it is not a large step to explain func-
tions by introducing run-time activation records (Chapter 15), with a lot of the
mystery about argument passing, dynamic declarations, and so on, going away.
Since a function can call a function, it is one additional small step (certainly no
magic involved) for a function to call itself,

How fo Use This Book

We have discovered over the past two years that there are many ways the material
in this book can be presented in class effectively. We suggest six presentations
below:

1. The Michigan model. First course, no formal prerequisites. Very intensive,
this course covers the entire book. We have found that with talented, very
highly motivated students, this works best.

2. Normal usage. First course, no prerequisites. This course is also intensive,
although less so. It covers most of the book, leaving out Sections 10.3 and
10.4 of Chapter 10, Chapters 16 (recursion), 18 (the details of C 1/O), and
19 (data structures).

3. Secohd course. Several schools have successfully used the book in their
second course, after the students have been exposed to programming with
an object-oriented programming language in a milder first course. In this
second course, the entire book is covered, spending the first two-thirds of
the semester on the first 10 chapters, and the last one-third of the semester
on the second half of the book. The second half of the book can move
more quickly, given that it follows both Chapters 1-10 and the

preface to the first edition

introductory programming course, which the student has already taken.
Since students have experience with programming, lengthier
programming projects can be assigned. This model allows students who
were introduced to programming via an object-oriented language to pick
up C, which they will certainlty need if they plan to go on to advanced
software courses such as operating systems.

4. Two quarters. An excellent use of the book. No prerequisites, the entire
book can be covered easily in two quarters, the first quarter for Chapters
1-10, the second quarter for Chapters 11-19.

5. Two semesters. Perhaps the optimal use of the book. A two-semester
sequence for freshmen. No formal prerequisites. First semester, Chapters
1-10, with supplemental material from Appendix C, the Microarchitecture
of the LC-2. Second semester, Chapters 11-19 with additional substantial
programming projects so that the students can solidify the concepts they
learn in lectures.

6. A sophomore course in computer hardware. Some universities have found
the book useful for a sophomore level breadth-first survey of computer
hardware. They wish to introduce students in one semester to number
systems, digital logic, computer organization, machine language and
assembly language programming, finishing up with the material on stacks,
activation records, recursion, and linked lists. The idea is to tie the
hardware knowledge the students have acquired in the first part of the
course to some of the harder to understand concepts that they struggled
with in their freshman programming course. We strongly believe the better
paradigm is to study the material in this book before tackling an
object-oriented language. Nonetheless, we have seen this approach used
successfully, where the sophomore student gets to understand the concepts
in this course, after struggling with them during the freshman year.

some Observalions

Understanding, Not Memorizing

Since the course builds from the bottom up, we have found that less memorization
of seemingly arbitary rules is required than in traditional programming courses.
Students understand that the rules make sense since by the time a topic is taught,
they have an awareness of how that topic is implemented at the levels below it. This
approach is good preparation for later courses in design, where understanding of
and insights gained from fundamental underpinnings are essential to making the
required design tradeoffs,

The Student Debugs the Student’s Program

We hear complaints from industry all the time about CS graduates not being able
to program. Part of the problem is the helpful teaching assistant, who contributes
far too much of the intellectual component of the student’s program, so the student

