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Preface to the Third Edition

The third edition differs from the second edition in several respects. The
coverage of matrix algebra has been expanded. For example, the topic of
inverting partitioned matrices in this edition deals explicitly with a problem
that arises in estimation under (linear) constraints. Often this problem forces
us to deal with a block partitioned matrix whose (1,1) and (2,2) blocks are
singular matrices. The standard method for inverting such matrices fails;
unless the problem is resolved, explicit representation of estimators and as-
sociated Lagrange multipliers is not available. An important application is
in estimating the parameters of the general linear structural econometric
model, when the identifying restrictions are imposed by means of Lagrange
multipliers. This formulation permits a near effortless test of the validity of
such (overidentifying) restrictions.

This edition also contains a treatment of the vector representation of
restricted matrices such as symmetric, triangular, diagonal and the like. The
representation is in terms of restricted linear subspaces. Another new feature
is the treatment of permutation matrices and the vec operator, leading to an
explicit representation of the relationship between A@ B and BR A.

In addition, it contains three new chapters, one on asymptotic expansions
and two on applications of the material covered in this volume to the general
linear model and the general linear structural econometric model, respec-
tively. The salient features of the estimation problems in these two topics
are discussed rigorously and succinctly.
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vi PREFACE

This version should be useful to students and professionals alike as a
ready reference to mathematical tools and results of general applicability in
econometrics. The two applications chapters should also prove useful to non-
economist professionals who are interested in gaining some understanding of
certain topics in econometrics.

New York, New York Phoebus J. Dhrymes
May 2000



Preface to the Second Edition

The reception of this booklet has encouraged me to prepare a second edition.

The present version is essentially the original, but adds a number of very
useful results in terms of inverses and other features of partitioned matrices,
a discussion of the singular value decomposition for rectangular matrices,
issues of stability for the general linear structural econometric model, and
similar topics.

I would like to take this opportunity to express my thanks to many of my
students and others for pointing out misprints and incongruities in the first
edition.

New York, New York Phoebus J. Dhrymes
March 1984

vii



Preface to the First Edition

This book began as an Appendix to Introductory Econometrics. As it pro-
gressed, requirements of consistency and completeness of coverage seemed
to make it inordinately long to serve merely as an Appendix, and thus it
appears as a work in its own right.

Its purpose is not to give rigorous instruction in mathematics. Rather it
aims at filling the gaps in the typical student’s or professional’s mathematical
training, to the extent relevant for the study of econometrics.

Thus, it contains a collection of mathematical results employed at various
stages of Introductory Econometrics. More generally, however, it could serve
as a useful adjunct and reference to students of econometrics, no matter what
text is being employed.

In the vast majority of cases, proofs are provided and there is a modicum
of verbal discussion of certain mathematical results, the objective being to
reinforce the student’s understanding of the formalities. In certain instances,
however, when proofs are too cumbersome, or complex, or when they are too
obvious, they are omitted.

New York, New York Phoebus J. Dhrymes
May 1978
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Chapter 1

Vectors and Vector Spaces

In nearly all of the discussion in this volume, we deal with the set of real
numbers. Occasionally, however, we deal with complex numbers as well. In
order to avoid cumbersome repetition, we shall denote the set we are dealing
with by F and let the context elucidate whether we are speaking of real or
complex numbers, or both.

1.1 Complex Numbers

For the sake of completeness, we begin with a brief review of complex num-
bers, although it is assumed that the reader is at least vaguely familiar with
the subject.

A complex number, say z, is denoted by
z = 41y,
where z and y are real numbers and the symbol ¢ is defined by
it = —1. (1.1)

All other properties of the entity denoted by i are derivable from the basic
definition in Eq. (1.1). For example,

i* = @)@ = (-1)(-1) = L

1



2 CHAPTER 1. VECTORS AND VECTOR SPACES

Similarly,
i = (1%)(4) = (=1)i = —i,
and so on.

It is important for the reader to grasp, and bear in mind, that a complex
number is describable in terms of an ordered pair of real numbers.
Let

Zj=1j+iyj, j=172a
be two complex numbers. We say
21 = 29
if and only if
Ty =1z and y, =y

Operations with complex numbers are as follows.
Addition:

21+ 29 = (1 + x2) + (31 + ¥2)-

Multiplication by a real scalar:

cz1 = (cz1) + iey).

Multiplication of two complex numbers:

2129 = (179 — Y1) + 1(T1Y2 + To).

Addition and multiplication are, evidently, associative and commutative; i.e.
for complex z;, j=1,2,3,

21+ 23+ 23=(21+2)+23 and z12923 = (2122)23,

Z1+29=20+2 and 2129 = 2p2.

and so on.
The conjugate of a complex number 2 is denoted by z and is defined
by

Z=1x—1y.

Associated with each complex number is its modulus or length or ab-
solute value, which is a real number often denoted by |z| and defined
by

2] = (22)'/* = (® + y)/2.
For the purpose of carrying out multiplication and division (an operation

which we have not, as yet, defined) of complex numbers, it is convenient to
express them in polar form.
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Figure 1.1.

1.1.1 Polar Form of Complex Numbers

Let z, a complex number, be represented in Figure 1 by the point (z;,y),
its coordinates.

It is easily verified that the length of the line from the origin to the point
(z1,91) represents the modulus of z;, which for convenience we denote by
ry1. Let the angle described by this line and the abscissa be denoted by 6, .
As is well known from elementary trigonometry, we have

cosf) = ?, sin @, = %1— (1.2)
1 1

We may write the complex number as
21 =T + 1ty =rycosby +irysind; = r(cos ) +isinb;).
Further, we may define the quantity
e®' = cosfy + isinb,, (1.3)
and thus write the complex number in the standard polar form
2 = e, (1.4)

In the representation above, 7, is the modulus and 6; the argument of the
complex number z;. It may be shown that the quantity e as defined in
Eq. (1.3) has all the properties of real exponentials insofar as the operations
of multiplication and division are concerned. If we confine the argument
of a complex number to the range [0,27), we have a unique correspondence
between the (z,y) coordinates of a complex number and the modulus and
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argument needed to specify its polar form. Thus, for any complex number
z, the representations

z2 =z 41y, z =re',
where - :
r=(z*+1y*)"?, cosf=-, sinf=2,
r T
are completely equivalent.
In polar form, multiplication and division of complex numbers are ex-
tremely simple operations. Thus,

2129 = (179) €01 +62)

2 (ﬁ) i 01=62)
23 T2 '
provided 2z, # 0.
We may extend our discussion to complex vectors, i.e. ordered n-
tuples of complex numbers. Thus
z=z 41y

is a complex vector, where x and y are n-element (real) vectors (a concept
to be defined immediately below). As in the scalar case, two complex vectors
z1, 22 are equal if and only if

I = Ty, Y1 = Y2,
where now z;, v;, i = 1,2, are n-element (column) vectors. The complex
conjugate of the vector z is given by
Z=1zx—1y,
and the modulus of the complex vector is defined by
(2)'2 = (= + i) (z — iy)]'/? = (2= + y'y)*/?,
the quantities z’z, y'y being ordinary scalar products of two vectors. Ad-
dition and multiplication of complex vectors are defined by
21 + 2= (21 + 2) +i( + y2),
222 = (2122 — Y1y2) +i(yjz2 + 213%2),
2125 = (T1%5 — YY) + 1 (125 + 2195),
where z;, v;, © = 1,2, are real n-element column vectors. The notation
for example z}, or y, means that the vectors are written in row form,
rather than the customary column form. Thus, z;z} is a matrix, while 2}z,
is a scalar. These concepts (vector, matrix) will be elucidated below. It is

somewhat awkward to introduce them now; still, it is best to set forth at the
beginning what we need regarding complex numbers.
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1.2 Vectors

Definition 1.1. Let a; € F, i =1,2,...,n; then the ordered n-tuple

Qn
is said to be an n-dimensional vector.

Remark 1.1. Notice that a scalar is a trivial case of a vector whose dimen-
sionis n=1.

Customarily we write vectors as columns, so strictly speaking we should
use the term column vectors. But this is cumbersome and will not, be used
unless required for clarity.

If the elements of a vector, a;, i =1,2,...,n, belong to F, we denote this

by writing
aeF.

Definition 1.2. If a € F is an n-dimensional column vector, its transpose
is the n-dimensional row vector denoted by

aI:(a‘h Qz, Qz, ..., au)'

If a,b are two n-dimensional vectors and a,b € F, we define their sum by

ay + b
a+b=
a, + b,
If ¢ is a scalar and ¢ € F, we define
cay
Ccag
ca = .
cay

If a,b are two m-dimensional vectors with elements in F, their inner prod-
uct (which is a scalar) is defined by

a'b=aib; + azby + -+ - + anby.



