J. S. Lomont

APPLICATIONS
OF
FINITE GROUPS



APPLICATIONS
| b
FINITE GROUPS

J.S.lomont

Institute of Mothematical Sciences
New York University

[

1959

Academic Press

New Yoik + Llondon



CoryricHT ©, 1869, A "ADEMIC Press INc.

A1r RicHTS RESERVED

NO PART OF THIS BGOK MAY BE REPRODUCED IN ANY FORM,
BY PHOTOSTAT, MICNOFILM, OR ANY OTHER MEANS, WITHOUT
WRITTEN PERMISSION FROM THE PUBLISHERS.

AcapeMIc Press Inc.
111 FIFrTe AVENUE
New York 3, N.Y.

LiBRARY OF CONGRESS CATALOG CARD NUMBER:
58-12792 :

PRINTED IN THE UNITED STATES OF AMERICA



PREFACE

Group theory is primarily a formal mathematical tool for treating
symmetry systematically. Consequently group theory is of use to physicists
in treating systems of twa types: (1) those which possess symmetry but are
too complex to be treatad in detail by analysis, and (2) those whose properties
(e.g. interactions) are net known in detail. It is also useful in formulating
theories for which symmetry requirements are specified a priori.

. The objectives of this book are: (1) to provide a mathematical back-
groupd (primarily representation theory) in finite groups which is adequate
" both for reading this book and for reading the physics literature, and (2) to
provide a variety of instructive and interesting examples of applications of
finite groyps to problems cf physics. It is assumed that the reader has been
exposed tc matrix theory and general group theory. Also a knowledge of
quantum mechanics is presupposed. The definitions and theorems (except
for the definition of a group) are for finite groups unless otherwise stated.

A chapter on space groups has been included because space groups can
also be treated (with a few lapses of rigor) by the methods of finite groups.
Also, because finite and continuous groups are rather inextricably mixed in
some applications it has been necessary to include brief discussions of some
continuous groups. In these discussions, however, the topological aspects
of continuous groups were assiduously avoided. The handbock style
appendix on Lorentz groups was included as a convenience for research
workers. ;

Chapters 7 and 8 cap be read without first reading chapters 5 and 6.

The author would like to express his gratitude to Professor W. Magnus
for his untiring encouragement and for many clarifying discussions, to
Professor G. W. Mackey for a lucid clarification of the theory of little groups,
and to Professor E. P. Wigner for numerous uvseful discussions. Also, the
author would like to thank Dr. J. E. Maxfield for proving several theorems
on matrices, Dr. G. J. Lasher for a careful and criticai proofreading of the
baook, Dr. J. Brooks for conscientiously reading the first few chapters, and
Dr. G. S. Colladay for several uéefgl discussions and calculations.’

J. S. LomoNT
New York :
February, 1959
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an element is contained in, e.g., p €S—p is contained in the set S
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2. i. MATRICES

\ [D, D'l =g.

On the other hand, if DD+ DD =0, then D =0. Some 1mportant
special types of normal matrices are:

(1) unitary matrices D'1D =1

(2) hermitian matrices D' = D

(3) orthogonal matrices D'D =1 D*=D (We consider only real
orthogonal matrices, which are- thercfore also real unitary matrices.)

(4) rotation inatrices (These are orthogonal matrices which have positive
determinants.) :

(8) symmetric matrices D'=D D*=0D (Again we consider only real
ones.)

(6a) permutation matrices (A permutation matrix is a square matrix
whose elements are all either one or zero and which has exactly one
nonzero entry in each row and exactly one in each column.)

-~

Example.
010

D =240 0}
\ 00
(6b) pseudopermutation matrices (Let us understand by this term any
> 13 matrix obtained from any permutation matrix by replacing some
of the ones by minus ones.)
(7) diagonal matrices (All off-didgonal elements are zero.)
(8) scalar matrices D = yI, where y is any complex number.
Some other special types of matrices which will be of interest are
) unimedular (or special) matrices: det (D) =1
2) integral matrices (Every element is an integer.)
3) idempotent matrices D2 =D -
4) nilpotent matrices D¥ = 0, for some positive integer NV
5) -monomial matrices (These are square matrices having only one non-
zero entry in each row and only one in each column.)
(6) real matrices D* = D :
(7) skew symmetric matrices D' = — D )
We can now proceed to the meat of matrix theory. Subsequently, the
entry in the sth row and'jth column of a matrix D will be denoted by Dy

(
(
(
(
(

- Definition. The frace (or spur) of a square d-dimensicnal matrix D
{abbreviated tr (D)) is the sum of the dia.gonal elements of D.

tr (D) = E Dy,
Note.- If D, and D, are square matrices of the same dimension, then
tr (D Dy) = tr (D, D))



1. MATRICES ' 3

Note. If D isa unitary matrix of dimensiond, tr (D) = + d,then D=+ I
(according to the sign of the trace). :
Definition. Let D be a d-dimensional square matrix.
(2) The characteristic polynomial of D is det (D — AI) (which is a dth
degree polynomial in A with leading coefficient (— 1)%).
(b) The characteristic equation of D is | D — M| =0.
(c) The eigenvalues of D are the d Toots A ,Ad of the characteristic
equation of D. :
it can easily be shown that the eigenvalues of hermitian matrices are
real and that the eigenvalues of unitary matrices have modulus one.

Theorem. If D is a d-dimensional square matrix with eigenvalues
A,...,A,, then

: i=1
Definition. The degeneracy of an eigenvalue of a square matrix D is the
number of times it cccurs as a root of the characieristic egnation of D.
Definition. A positive dejinite square matrix is a hermitian matrix whose
eigenvalues are all positive.

Theorem. det (D) = H A
=1

Not~ (1) A skew symmetric matrix of odd dimension has determinaut
s P ;

(2) The dimension of a skew symmetric unitary rmatrix cannot be odd.

Corellary. A square matrix is nonsingular (or regular) if and only if it
has no eigenvalues equal to zero.

Also, it may be recalled that if all the elements of a matrix are posmve,
then the matrix has one nondegenerate positive cigenvalne whose magmtude
is larger than that of any other eigenvalue. :

Definition. Two square matrices I, and D, such that

Die= SRS, -
where 3 is a nensingular square matrix, are said to be eguivalent (or similar)
{we shall write Dy .= D). ‘

Note that this implies that D, and 0, must have the same dimension
and that D, .z==. D,. It may be recalled that an eguivalence transformation
can be geometrically interpreted as a change of axes (alias transformation) or
as a point transformation (alibi transformation). Also, if two equivalent
matrices D, and IJ, are given, then the problem of ﬁnding the general form
of the transfcrmation matrix S connecting them is guite laborious. We

~~shall return to this preblem later.
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Theorem. D,.=: D, implies
(1) tr(D,) = tr (D)
(2) det (D,) = det(D,)
(8) D, and D, have the same characteristic polynomial
(4) D, and D, have the same eigenvalues.
Every square matrix D is equivalent to a simple “almost”’-diagonal
matrix / which depends on D and which is known as the Jordan canonical
form of D. However, we shall not discuss this further here.

Definition. A diagonalizable matrix is a square matrix which is equivalent
to a diagonal matrix.

No simple criterion for diagonalizability seems to be known, but a few
useful relevant results are known.

Theorem. The diagonal elements of a diagonal matrix equivalent to D
are the eigenvalues of D.

Theorem. A square matrix is diagonalizable if its eigenvalues are non-
degenerate.

We shall say that a diagonalizabie matrix D is diagonalizable by a
unitary matrix if there exists a unitary matrix U such that U'DU is a
diagonal matrix.

Theorem. (1) A square matrix D is diagonalizable by a unitary matrix

if and only if D is a normal mainx

(2) A real square matrix D is diagonalizeable by an orthogonal matrix

if and only if D is 2 symmetric matric.

Hence, the various special types of normal matrices listed earlier are
all diagonalizable. In fact, practicaliy all matrices which will be of interest
to us will be diagonalizable. We shall now state several well-known
equivalence theorems for dizgonalizable matrices. A

Theorem. Two diagonalizable matrices I; and D, are equivalent if and
only if

(1) dim (D)) =dim(Dy}  (=4)
(@) tr(Dy) = tr (DY) t=1.d

Theoram. Each of the following isa necessary and sufficient condition
for a diagonalizable matrix D to be equivalent to a real matrix.

(1) The eigenvalues of D occur in complex conjugate pairs.

{2) The traces of the first 4 powers of D are real [where d = dim (D)].

Theorem. A matrix D is equivalent to a real matrix if and only if
D.=. D~

Theorem. A matrix is equivalent only to real matnces if and only if it
is a real scalar matrix.
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Theorem. A diagonalizable matrix D is equivalent to an integral matrix
if and only if (1) the traces of the first 4 powers of D are integers [d =
dim (D)]; (2) the eigenvalues of D are algebraic integers.

By an integer is meant a real whole number, and by an algebraic integer
is meant a root of an equation of the form

XN + &y XN_1 + ay_g XN—Z + oo + @y = O,
in which all of the a’s are integers. We shall see later that crystallographic
groups can be considered to have eiements which are integral matrices.

Theorem. If two real matrices are equivalent, then they are equxvalent
with respect to a real transformation.

That is, if D, = S D, S} where D, and D, are real, then there exists a
real matrix 7 such that D, = T7'D, T. In fact, if we split S into real and
imaginary parts, S = P + 1Q, _and let A be any real number such that
[P+ M| #0, thenwecan put T = P + AQ. )

Definition. A projection mairix is an idempotent diagonalizable matrix.

We now move on to some more difficult concepts which involve sets of
matrices. Although the theorems will be stated for finite sets they hold also
for infinite sets.

Definition. LetD,;,D,,...,Dy; D', Dy',..., Dy’ be twosets (not necessarily
finite) of square matrices. These two sefs will be saxd to be equivalent if there
exists a square matrix S such that

D= $1 DS f=bLnN
for some ordering of the second set.

‘Example.

r . 10)" O\ -1 0 0 01\’0-—1 0—3\/0 ¢
1'01(04/( mo- —r o/tr o/i—i oflio
ALt [ 51 8¢ (b1 — 8\ (—T —10 7 10

Iy (.0 1) ( 0 —-1)( %p—bz,( 3 5i)( 5 7) (-5—7)
: ( 5i 6\ [—bi —6s :

| —4s ~51)( 4 i

- ol bR : 1 42
where I'y -=- Iy and S = (3 4) St ?5(_3 1)

oy

It follows that all of the matrices D;, D;’, and S must have the same
dimension. Also, it is possible to have

D;'E“:' Di 1= l,..._,N
_without having the sets equivalent,
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Theorem. If two sets of real matrices are equivalent, then they are
cquivalent with respect to a real transformation. 5

This result will be essential to our group thecretic denvatmn of
crystallographic point groups.

Theorem. If two sets of unitary (orthogonal) matrices are equivalent,
then they are equivalent with respect to a unitary (orthegonal) transfermation.

Theorem. If 2 set of unitary matrices is equivalent to a set of real
matrices, then it is equivalent to a set of orthogonal matrices.

Definition. A set of matrices will be said to be diagonalizable if the set
is equivalent to a set of diagonalizable matrices.

Note that a set of diagonalizable matrices need not be a diagonalizable
set of matrices. In fact, there is a very simple result for normal matrices.

Theorem. A set of normal matrices of the same dimension is diagonaliz-
able if, and only if, the commutator of every pair of matrices of the set is zero.

Such a set of matrices is called a commuting set, and one sees immediately
that every set of diagonal matrices is a commuting set.

. Definition. {a) A set of d-dimensional diagonal matrices Ayl %
complete if no two sets S; and S, of the 4 sets of eigen— .es
S; = (Ay Az ...; Ay ;) are equal term by term. (A single .atrix
thh no degenerate eigenvalues is thus a complete set.)

Example.
S R e e
3100 (ozoo 0100
o020f] loo20] loo1o
0002 \voo1/ \oooze2

is a complete set because
= (1,1,2), S;=(1.21), S3=(221), S,=(212),

and no two of these sets are equal term by term.
(b) A complete comsnuting set of normal matrices is a set of normal matrices
which is equivalent to a complete set of diagonal matrices.
This concept is important in labeiling states in the Dirac formulation of
quantum mechanics.
We proceed now to the concept of reduc1b1hty and represent subarrays of
a mairix by matrices. Thus we shall consider matrices whose elements are
also matrices.

Definition. A reduced matrix is a matrix of the form

(o o) = (76 253

- ~ 5 -
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where D(i7) is a matrix, D(#) is square, and the off-diagonal zero matrix has
at least one row. -

Example. '
1 2 0\ (126
(3 4 0) and (3 4 7\
6 7 b/ 9 0 5/
are reduced matrices.
_ In fact, since the Jordan canonical form of a matrix is reduced, it follows
that every matrix is equivalent to a reduced matrix, oris reducible (if d 7 1).
Definition. A sef of matrices D;,.... Dy {of the same dimension) is reduced
if every matrix of the sct has the red 1ced forrr

DL (Di(»‘ 1) 0 ) :
= \Dye1) - Dy22)) * _
where dim D (11) = dim D,{11), 7,7 = 1,...,N, and the zero matrices have at
least one row (or, the zero matnix may be in the lower left corner of ali D’s
instead of the upper right).
Redt.mblhty is thus a weak substitute for diagonalizability.

Example.
: /1 20\° (4730
{2 4 o] (1 2 0
\5 T 67 6 6 7/

is a reduced set.

We finally arrive at the cencept of reducibility of a set.

‘Definition. A set of matrices is reductble if it is equivalent to a reduced
set of matrices.

Reducibility is thus a sort of weakened diegonalizability, because every
diagonalizabie matrix is reducible although the converse is not true. Also,
we have seen that cvery matrix is reducible. However, not every set of
matrices is reducible. For example, the set ’

101/-1 0 ——iﬁ)l/'i 0) "01\,0—1\ 0 —i\ /O 1
o)\ o —1)\ o 0 —1')’(\—1 ol ol oflio
is not reducible. Also, any set of I-dimensional matrices is not reducible.
Definition. A set of square matrices of the same dimension is srreducille
if it is not reducible.

We come new to a result which is the key to the proofs of many reeul’u
of representation theory, and which is known as Schur’s lemma.

Lemma (Schur). Let D/,..., Dy’ be an irreducible set of #’-dimensional

~ matrices; and D,”,..., D" an irreducible set of 4"-dimensional matrices.

Then, if there exists a matrix S such that DS =SD,” for some ordering of
the second set, then it follows that either



8 I. MATRICES

(1) Sis a zero matrix, or (2) S is a squarenonsingular matrix (so d’ = d”).

Outline of Proof. Let the 4" columns of S be denoted by @,,4,, ...,0,-
Then by the rules of matrix multiplication we find that for a typical matrix
D’ and a typical matrix D" :

D'S = (De';, Da'y,..., Do'.)
S T :
SD* = (E prw S e N D;d.c,‘). :
: k=1 =1 =1
: Hence

a”
D'e;= 3 Dijo,

and:we see that the d” a-vectors span a space which is invariant under the
irreducible set of d’-dimensional matrices {D'}. Consequently, the a-vectors:
are the null vector or they span a 4’-dimensional vector space. In the first
case S = 0, and in the second case 4" > d’ and S # 0.

Let us consider the second case further. From the fact that the sets
Dy,...Dy and D.",....D," are irreducible it easily follows that the sets
D',....Dy' and Dil,...,D% are irreducible. - Also, from the equations
D/S = SD/ it follows directly that D}'ST = S'D;'. Applying the procedure
of the preceding paragraph to these equations we find that 4’ > 2". Hence,
d' = d’", and S is square. Also, since the @’ columns of S span a 4'-dimensional
vector space, it foliows that S is nonsingular.

Corollary. A matriz D which commutes with an irreducible set of
matrices D;...., Dy (i.e.,, [D,D;] =0, i = 1,..., N) must be a scalar matrix.

Corollary. 1f S, and §; are two matrices such that D/'S; = S;D;" and
the two sets {D/"} and {D,"} are irreducible, then S; = AS, where A is a
number.

Theorem. Let D;,..., D beanirreducible set of d-dimensional matrices.
Then every d-dimensional matrix can be expressed as a polynomial in the
matrices Dy,..., Dy.

We shall say that a set of square matrices is equivalent to its complex
conjugate if the two sets are not only equivalent in the usual sense but are
also equivalent in the same order; i.e., if thers exists a matrix S such that
D*=S'D,S.

Theorem. Let {D,....,D,} be an irreducible set of square unitary
matrices of the same dimension which is equivalent to its complex conjugate
set (with the same order). Let U be any unitary matrix such that
D = UD,U for all D, Then, (1) if {D} is equivalent to a real set of
matrices, U' = U, (2) otherwise, U' = —U

We come now to the concepts of direct sum and complete reducibility.
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Definition. (a) Let D, D', D" be three square matrices. Then D is the
direct swm of D' and D" if

{50
B {‘.0 D')
or s
‘D" 0
e (0 D’)

This is written D = D’ @ D".
(b Let: P ={D,,.. . Dy}, I"=4{D/... D, Th= {5 .0y be
three sets of matrices. Then I'is the direct sum of I and I'” (written

r=r'gnrif
‘D, 0
2= {o" B
or if
D0
e
Example.

L @ik O} W o
r={fo 1} ("o o)} =1} =)
Definition. A set of matrices is compietely reducible if it is equivalent to
the direct sum of two other sets of matrices (written I' .=. I'" @ I'").

If a set is itself the direct sum of two sets, then it is completely reducible
(as is I' of the preceding example).

Note. If I'is completely reducible it is reducible.

This statement is true because complete reducibility simply means that
there is a zero matrix in both the upper right and lower left corners of the
completely reduced matrix; whereas reducibility requires only one such zero
matrix. The converse of this theorem is not true.

Theorem. I''=-I"@® I implies dim (D;) = dim (D;") 4+ dim (D;")
tr(Dy) = tr (D} + tr (D))

Note.” If the only matrices which commute with a set of square matrices
of the same dimension are scalar matrices, then the set of matrices is not
completely reducible. ‘

One of our preceding theorems can now be generalized slightly.

Theorem. Let {D,,..., Dy} be a set of square unitary matrices of the
same dimension which is equivalent to its complex conjugate set (in the same
order), but not to a set of real matrices. Also let the set be completely reduced
into irreducible unitary components, and let U be any unitary matrix such
that D* = U'D,U. Then U'= —U.
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One can form not only direct sums of matrices but also direct products.

~ Definition, The Kronecker product (or direct product) of twe square
matrices D’ and D" is the matrix D whose element in the #jth row and &ith
column is given by
Dy = Dy Dy

. (written D = D’ ® D"). (The actual ordering of rows in D is not imporiant

for our work and cousequently will not be specified.)

Theorem. (1) dim(D’ ® D") = dim (D’) X dim (D"}

(2) tr(D' @ D) = tr(D') x tr(D")

(3) the eigenvalues of D' ® D” are the products A;' ;" where A and A"

-are eigenvalues of D' and D".
Theorem. If diln D’ = dim D,’ 2
dim D" = dim D,",
then
(Dy' ® D)) (D)’ ® Dy) = (Dy'Dy) @ (Dy"Dy").

Theorem. For every D', D” there exists a 4'd"-dimensional permutation
matrix P such that D' ® D" = P (D" @ D)P.

Definition. If I = {D/,..., Dy} is aset of d’-dimensional matrices and
I" = {Dy",..., Dy} is a set of d"-dimensional matrices, then

(@ "eIl”={b,/® D,,..,Dy @ Dy} if N'= N*

(b) I'" x I'" = the set of all N'N" matrices D/ ® D,"

i=L.,N- j=1.,N"

are cailed the #mner and owter Kronecker products of the two sets.

If D is a square, d-dimensional matrix, then let us call the set of all
d-dimensional column matrices the carrier space of D. This is cbviously a
d-dimensional vector space. Furthermore; if V is a vector of the carrier

space of D, one can define its transformed vector V' by o
v' = Dy

or
9= D,-,- Y

S

(using the summation. convention for repeated indices"). Then, a kth rank
‘tensor F, i which transforms under D will be transformed as a product

of vectors, :

'l"'ik ;1]‘1 igd
That is, a kth rank tensor is transformed by the ith Kronecker power of D
(call it D,), or, then tensor F is a vector in the carrier space of D,.

If one considers the transformation properties of the independent



