Eighth Edition

‘Software Engineering
A PRACTITIONER'S APPROACH

Roger S.
- PRESSMAN

Bruce R.
MAXIM

A PRACTITIONER’S APPROACH

EIGHTH EDITION

Roger S. Pressman, Ph.D.
Bruce R. Maxim, Ph.D.

Education

Mc
Graw

Hill

Education

SOFTWARE ENGINEERING: A PRACTITIONER'S APPROACH, EIGHTH EDITION

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2015 by McGraw-Hill
Education. All rights reserved. Printed in the United States of America. Previous editions © 2010, 2005, and
2001. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not
limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper.
1234567890DOC/DOC 10987654

ISBN 978-0-07-802212-8
MHID 0-07-802212-6

Senior Vice President, Products & Markets:
Kurt L. Strand
Vice President, General Manager: Marty Lange
Vice President, Content Production & Technology
Services: Kimberly Meriwether David
Managing Director: Thomas Timp
Publisher: Raghu Srinivasan
Developmental Editor: Vincent Bradshaw
Marketing Manager: Heather Wagner

Director, Content Production: Terri Schiesl
Project Manager: Heather Ervolino

Buyer: Sandy Ludovissy

Cover Designer: Studio Montage, St. Louis, MO.
Cover Image: Farinaz Taghavi/Getty images
Compositor: MPS Limited

Typeface: 8.5/13.5 Impressum Std

Printer: R. R. Donnelley

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Pressman, Roger S.

Software engineering : a practitioner’s approach / Roger S. Pressman,

Ph.D. — Eighth edition.
pages cm

Includes bibliographical references and index.
ISBN-13: 978-0-07-802212-8 (alk. paper)
ISBN-10: 0-07-802212-6 (alk. paper)

1. Software engineering. 1. Title.

QA76.758.P75 2015

005.1—dc23

2013035493

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website
does not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education does
not guarantee the accuracy of the information presented at these sites.

www.mhhe.com

A PRACTITIONER’S APPROACH

INEEgE o, FELARPDFIGEIE www. ertongbook. com

To my granddaughters
Lily and Maya, who already
understand the importance
of software, even though they're

still in preschool.
—Roger S. Pressman

In loving memory of
my parents, who taught
me from an early age that
pursuing a good education
was far more important

than pursuing money.
—Bruce R. Maxim

ABoOuUT THE AUTHORS

Roger S. Pressman is an internationally recognized consultant and author in soft-
ware engineering. For more than four decades, he has worked as a software engi-
neer, a manager, a professor, an author, a consultant, and an entrepreneur.

Dr. Pressman is president of R. S. Pressman & Associates, Inc., a consulting
firm that specializes in helping companies establish effective software engineer-
ing practices. Over the years he has developed a set of techniques and tools that
improve software engineering practice. He is also the founder of Teslaccessories,
LLC, a start-up manufacturing company that specializes in custom products for
the Tesla Model S electric vehicle.

Dr. Pressman is the author of nine books, including two novels, and many techni-
cal and management papers. He has been on the editorial boards of IEEE Software
and The Cutter IT Journal and was editor of the “Manager” column in IEEE Software.

Dr. Pressman is a well-known speaker, keynoting a number of major industry
conferences. He has presented tutorials at the International Conference on Soft-
ware Engineering and at many other industry meetings. He has been a member of
the ACM, IEEE, and Tau Beta Pi, Phi Kappa Phi, Eta Kappa Nu, and Pi Tau Sigma.

Bruce R. Maxim has worked as a software engineer, project manager, professor,
author, and consultant for more than thirty years. His research interests include
software engineering, human computer interaction, game design, social media,
artificial intelligence, and computer science education.

Dr. Maxim is associate professor of computer and information science at the
University of Michigan—Dearborn. He established the GAME Lab in the College
of Engineering and Computer Science. He has published a number of papers on
computer algorithm animation, game development, and engineering education.
He is coauthor of a best-selling introductory computer science text. Dr. Maxim
has supervised several hundred industry-based software development projects
as part of his work at UM-Dearborn.

Dr. Maxim'’s professional experience includes managing research informa-
tion systems at a medical school, directing instructional computing for a medical
campus, and working as a statistical programmer. Dr. Maxim served as the chief
technology officer for a game development company.

Dr. Maxim was the recipient of several distinguished teaching awards and a
distinguished community service award. He is a member of Sigma Xi, Upsilon Pi
Epsilon, Pi Mu Epsilon, Association of Computing Machinery, IEEE Computer
Society, American Society for Engineering Education, Society of Women Engineers,
and International Game Developers Association.

CoNTENTS AT A GLANCE

CHAPTER 1
CHAPTER 2

The Nature of Software 1
Software Engineering 14

PART ONE THE SOFTWARE PROCESS 20
CHAPTER 3 Software Process Structure 30
CHAPTER 4 Process Models 40
CHAPTER 5 Agile Development 66
CHAPTER 6 Human Aspects of Software Engineering 87
PART TWO MODELING 103
CHAPTER 7 Principles That Guide Practice 104
CHAPTER 8 Understanding Requirements 131
CHAPTER 9 Requirements Modeling: ScenarioBased Methods 166
CHAPTER 10 Requirements Modeling: ClassBased Methods 184
CHAPTER 11 Requirements Modeling: Behavior, Patterns, and Web/Mobile Apps 202
CHAPTER 12 Design Concepts 224
CHAPTER 13 Architectural Design 252
CHAPTER 14 Componentlevel Design 285
CHAPTER 15 User Interface Design 317
CHAPTER 16 Pattern-Based Design 347
CHAPTER 17 WebApp Design 371
CHAPTER 18 MobileApp Design 391
PART THREE QUALITY MANAGEMENT 411

CHAPTER 19
CHAPTER 20
CHAPTER 21
CHAPTER 22
CHAPTER 23
CHAPTER 24
CHAPTER 25
CHAPTER 26

Quality Concepts 412

Review Techniques 431

Software Quality Assurance 448
Software Testing Strategies 466

Tesling Conventional Applications 496
Testing Object-Orienfed Applications 523
Testing Web Applications 540

Testing MobileApps 567

viii CONTENTS AT A GLANCE

CHAPTER 27 Security Engineering 584

CHAPTER 28 Formal Modeling and Verification 601
CHAPTER 29 Software Configuration Management 623
CHAPTER 30 Product Mefrics 653

PART FOUR MANAGING SOFTWARE PROJECTS 6s3

CHAPTER 31 Project Management Concepts 684
CHAPTER 32 Process and Project Metrics 703
CHAPTER 33 Estimation for Software Projects 727
CHAPTER 34 Project Scheduling 754

CHAPTER 35 Risk Management 777

CHAPTER 36 Maintenance and Reengineering 795

PART FIVE ADVANCED TOPICS 3517

CHAPTER 37 Software Process Improvement 818
CHAPTER 38 Emerging Trends in Software Engineering 839
CHAPTER 39 Concluding Comments 860

APPENDIX 1 An Introduction to UML 869
APPENDIX 2 ObjectOriented Concepts 891
APPENDIX 3 Formal Methods 899
REFERENCES 909

INDEX @33

When computer software succeeds—when it meets the needs of the people who
use it, when it performs flawlessly over a long period of time, when it is easy
to modify and even easier to use—it can and does change things for the better. But
when software fails—when its users are dissatisfied, when it is error prone, when it
is difficult to change and even harder to use—bad things can and do happen. We all
want to build software that makes things better, avoiding the bad things that lurk in
the shadow of failed efforts. To succeed, we need discipline when software is designed
and built. We need an engineering approach.

It has been almost three and a half decades since the first edition of this book
was written. During that time, software engineering has evolved from an obscure idea
practiced by a relatively small number of zealots to a legitimate engineering disci-
pline. Today, it is recognized as a subject worthy of serious research, conscientious
study, and tumultuous debate. Throughout the industry, software engineer has re-
placed programmer as the job title of preference. Software process models, software
engineering methods, and software tools have been adopted successfully across a
broad spectrum of industry segments.

Although managers and practitioners alike recognize the need for a more disci-
plined approach to software, they continue to debate the manner in which discipline
is to be applied. Many individuals and companies still develop software haphazardly,
even as they build systems to service today’'s most advanced technologies. Many pro-
fessionals and students are unaware of modern methods. And as a result, the quality
of the software that we produce suffers, and bad things happen. In addition, debate
and controversy about the true nature of the software engineering approach continue.
The status of software engineering is a study in contrasts. Attitudes have changed,
progress has been made, but much remains to be done before the discipline reaches
full maturity.

The eighth edition of Software Engineering: A Practitioner’'s Approach is intended
to serve as a guide to a maturing engineering discipline. The eighth edition, like the
seven editions that preceded it, is intended for both students and practitioners, re-
taining its appeal as a guide to the industry professional and a comprehensive intro-
duction to the student at the upper-level undergraduate or first-year graduate level.

The eighth edition is considerably more than a simple update. The book has been
revised and restructured to improve pedagogical flow and emphasize new and im-
portant software engineering processes and practices. In addition, we have further
enhanced the popular “support system” for the book, providing a comprehensive set
of student, instructor, and professional resources to complement the content of the
book. These resources are presented as part of a website (www.mhhe.com/pressman)
specifically designed for Software Engineering: A Practitioner’s Approach.

The Eighth Edition. The 39 chapters of the eighth edition are organized into five
parts. This organization better compartmentalizes topics and assists instructors who

may not have the time to complete the entire book in one term.
Xxvii

PREFACE

Part 1, The Process, presents a variety of different views of software process, consid-
ering all important process models and addressing the debate between prescriptive
and agile process philosophies. Part 2, Modeling, presents analysis and design meth-
ods with an emphasis on object-oriented techniques and UML modeling. Pattern-
based design and design for Web and mobile applications are also considered. Part 3,
Quality Management, presents the concepts, procedures, techniques, and methods
that enable a software team to assess software quality, review software engineering
work products, conduct SQA procedures, and apply an effective testing strategy and
tactics. In addition, formal modeling and verification methods are also considered.
Part 4, Managing Software Projects, presents topics that are relevant to those who
plan, manage, and control a software development project. Part 5, Advanced Topics,
considers software process improvement and software engineering trends. Continu-
ing in the tradition of past editions, a series of sidebars is used throughout the book to
present the trials and tribulations of a (fictional) software team and to provide supple-
mentary materials about methods and tools that are relevant to chapter topics.

The five-part organization of the eighth edition enables an instructor to “cluster”
topics based on available time and student need. An entire one-term course can be
built around one or more of the five parts. A software engineering survey course
would select chapters from all five parts. A software engineering course that empha-
sizes analysis and design would select topics from Parts 1 and 2. A testing-oriented
software engineering course would select topics from Parts 1 and 3, with a brief foray
into Part 2. A “management course” would stress Parts 1 and 4. By organizing the
eighth edition in this way, we have attempted to provide an instructor with a number
of teaching options. In every case the content of the eighth edition is complemented
by the following elements of the SEPA, 8/e Support System.

Student Resources. A wide variety of student resources includes an extensive on-
line learning center encompassing chapter-by-chapter study guides, practice quizzes,
problem solutions, and a variety of Web-based resources including software engineer-
ing checklists, an evolving collection of “tiny tools,” a comprehensive case study, work
product templates, and many other resources. In addition, over 1,000 categorized Web
References allow a student to explore software engineering in greater detail and a
Reference Library with links to more than 500 downloadable papers provides an in-
depth source of advanced software engineering information.

Instructor Resources. A broad array of instructor resources has been developed to
supplement the eighth edition. These include a complete online Instructor’s Guide
(also downloadable) and supplementary teaching materials including a complete set
of more than 700 PowerPoint Slides that may be used for lectures, and a test bank. Of
course, all resources available for students (e.g, tiny tools, the Web References, the
downloadable Reference Library) and professionals are also available.

The Instructor’s Guide for Software Engineering: A Practitioner’'s Approach pres-
ents suggestions for conducting various types of software engineering courses, rec-
ommendations for a variety of software projects to be conducted in conjunction with a
course, solutions to selected problems, and a number of useful teaching aids.

Professional Resources. A collection of resources available to industry practitioners
(as well as students and faculty) includes outlines and samples of software engineering
documents and other work products, a useful set of software engineering checklists,

PREFACE Xxix

a catalog of software engineering tools, a comprehensive collection of Web-based re-
sources, and an “adaptable process model” that provides a detailed task breakdown
of the software engineering process.

e Comect- McGraw-Hill Connect® Computer Science provides
online presentation, assignment, and assessment solu-

| COMPUTER SCIENCE)

tions. It connects your students with the tools and
resources they’ll need to achieve success. With Connect Computer Science you can
deliver assignments, quizzes, and tests online. A robust set of questions and activi-
ties are presented and aligned with the textbook’s learning outcomes. As an instruc-
tor, you can edit existing questions and author entirely new problems. Integrate
grade reports easily with Learning Management Systems (LMS), such as WebCT and
Blackboard—and much more. ConnectPlus® Computer Science provides students
with all the advantages of Connect Computer Science, plus 24/7 online access to a
media-rich eBook, allowing seamless integration of text, media, and assessments. To
learn more, visit www.mcgrawhillconnect.com

| I_ E /_\ R N S M /_\ R T‘ McGraw-Hill LearnSmart® is avail-

able as a standalone product or
an integrated feature of McGraw-Hill Connect Computer Science. It is an adaptive
learning system designed to help students learn faster, study more efficiently, and
retain more knowledge for greater success. LearnSmart assesses a student’s knowl-
edge of course content through a series of adaptive questions. It pinpoints concepts
the student does not understand and maps out a personalized study plan for success.
This innovative study tool also has features that allow instructors to see exactly what
students have accomplished and a built-in assessment tool for graded assignments.
Visit the following site for a demonstration. www.mhlearnsmart.com

| S M A R T B D D ™ Powered by the intelligent and adap-

tive LearnSmart engine, SmartBook™
is the first and only continuously adaptive reading experience available today. Distin-
guishing what students know from what they don’t, and honing in on concepts they
are most likely to forget, SmartBook personalizes content for each student. Reading
is no longer a passive and linear experience but an engaging and dynamic one, where
students are more likely to master and retain important concepts, coming to class
better prepared. SmartBook includes powerful reports that identify specific topics
and learning objectives students need to study.

When coupled with its online support system, the eighth edition of Software
Engineering: A Practitioner’s Approach, provides flexibility and depth of content that
cannot be achieved by a textbook alone.

With this edition of Software Engineering: A Practitioner’'s Approach, Bruce Maxim
joins me (Roger Pressman) as a coauthor of the book. Bruce brought copious software
engineering knowledge to the project and has added new content and insight that will
be invaluable to readers of this edition.

Acknowledgments. Special thanks go to Tim Lethbridge of the University of Ottawa
who assisted us in the development of UML and OCL examples, and developed the
case study that accompanies this book, and Dale Skrien of Colby College, who devel-
oped the UML tutorial in Appendix 1. Their assistance and comments were invaluable.

PREFACE

In addition, we'd like to thank Austin Krauss, Senior Software Engineer at Treyarch,
for providing insight into software development in the video game industry. We also
wish to thank the reviewers of the eighth edition: Manuel E. Bermudez, University of
Florida; Scott DeLoach, Kansas State University; Alex Liu, Michigan State University;
and Dean Mathias, Utah State University. Their in-depth comments and thoughtful
criticism have helped us make this a much better book.

Special Thanks. BRM: [am grateful to have had the opportunity to work with Roger
on the eighth edition of this book. During the time I have been working on this book
my son Benjamin shipped his first MobileApp and my daughter Katherine launched
her interior design career. I am quite pleased to see the adults they have become.
I am very grateful to my wife, Norma, for the enthusiastic support she has given me as
I filled my free time with working on this book.

RSP: As the editions of this book have evolved, my sons, Mathew and Michael, have
grown from boys to men. Their maturity, character, and success in the real world
have been an inspiration to me. Nothing has filled me with more pride. They now have
children of their own, Maya and Lily, who start still another generation. Both girls are
already wizards on mobile computing devices. Finally, to my wife Barbara, my love
and thanks for tolerating the many, many hours in the office and encouraging still
another edition of “the book.”

Roger S. Pressman
Bruce R. Maxim

TABLE OF CONTENTS

Preface xxvii

CHAPTER 1 THE NATURE OF SOFTWARE 1

1.1 The Nature of Software 3
1.1.1 Defining Software 4
1.1.2 Software Application Domains 6
1.1.3 legacy Software 7

1.2 The Changing Nature of Software 9
1.2.1 WebApps 9
1.2.2 Mobile Applications 9
1.2.3 Cloud Computing 10
1.2.4 Product Line Software 11

1.3 Summary 11

PROBLEMS AND POINTS TO PONDER 12

FURTHER READINGS AND INFORMATION SOURCES 12

CHAPTER 2 SOFTWARE ENGINEERING 14

2.1 Defining the Discipline 15
2.2 The Software Process 16
2.2.1 The Process Framework 17

222 Umbrella Activities 18
2.2.3 Process Adapfation 18

2.3 Software Engineering Practice 19
2.3.1 The Essence of Practice 19
2.3.2 Ceneral Principles 21

2.4 Software Development Myths 23

2.5 How It All Starts 26

2.6 Summary 27

PROBLEMS AND POINTS TO PONDER 27

FURTHER READINGS AND INFORMATION SOURCES 27

PART ONE THE SOFTWARE PROCESS 29

CHAPTER 3 SOFTWARE PROCESS STRUCTURE 30

3.1 A Generic Process Model 31

3.2 Defining a Framework Activity 32

3.3 [dentifying a Task Set 34

3.4 Process Patterns 35

3.5 Process Assessment and Improvement 37
3.6 Summary 38

PROBLEMS AND POINTS TO PONDER 38

FURTHER READINGS AND INFORMATION SOURCES 39

TABLE OF CONTENTS

CHAPTER 4 PROCESS MODELS 40

4.1 Prescriptive Process Models 41
4.1.1 The Waterfall Model 41
4.1.2 Incremental Process Models 43

4.1.3 Evolutionary Process Models 45
4.1.4 Concurrent Models 49

4.1.5 A Final Word on Evolutionary Processes 51
4.2 Specialized Process Models 52
4.2.1 Component-Based Development 53

4.2.72 The Formal Methods Model 53
4.2.3 AspectOriented Software Development 54
4.3 The Unified Process 55

4.3.1 A Brief History 56

432 Phases of the Unified Process 56
4.4 Personal and Team Process Models 59

4.4 Personal Software Process 59

442 Team Software Process 60
4.5 Process Technology 61
4.6 Product and Process 62
4.7 Summary 64
PROBLEMS AND POINTS TO PONDER 64
FURTHER READINGS AND INFORMATION SOURCES 65

CHAPTER 5 AGILE DEVELOPMENT 66

5.1 What Is Agilitye 68
52 Agility and the Cost of Change 68
5:3 What Is an Agile Processe 69
5:3,1 Agility Principles 70
532 The Politics of Agile Development 71
54 Extreme Programming 72
5.4.1 The XP Process 72
542 Industrial XP 75
5.5 Other Agile Process Models 77
58,1 Scrum 78
5.5.2 Dynamic Systems Development Method 79
5.5.3 Agile Modeling 80
554 Agile Unified Process 82
5.6 A Tool Set for the Agile Process 83
57 Summary 84
PROBLEMS AND POINTS TO PONDER 85
FURTHER READINGS AND INFORMATION SOURCES 85

CHAPTER 6 HUMAN ASPECTS OF SOFTWARE ENGINEERING

87

6.1 Characteristics of a Software Engineer 88
6.2 The Psychology of Software Engineering 89
6.3 The Software Team Q0
6.4 Team Structures 92
6.5 Agile Teams 93
6.5.1 The Generic Agile Team 93
6.5.2 The XP Team 94

TABLE OF CONTENTS

6.6 The Impact of Social Media 95

6.7 Software Engineering Using the Cloud 97
6.8 Collaboration Tools 98

6.9 CGlobal Teams 99

6.10 Summary 100

PROBLEMS AND POINTS TO PONDER 101

FURTHER READINGS AND INFORMATION SOURCES 102

PART TWO MODELING 103

CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 104

7.1 Software Engineering Knowledge 105
7.2 Core Principles 106
7.2.1 Principles That Guide Process 106
7.2.2 Principles That Guide Practice 107
7.3 Principles That Guide Each Framework Activity 109
7.3.1 Communication Principles 110
7.3.2 Planning Principles 112
7583 Modeling Principles 114
7.3.4 Construction Principles 121
7.3.5 Deployment Principles 125
7.4 Work Practices 126
7.5 Summary 127
PROBLEMS AND POINTS TO PONDER 128
FURTHER READINGS AND INFORMATION SOURCES 129

CHAPTER 8 UNDERSTANDING REQUIREMENTS 131

8.1 Requirements Engineering 132

8.2 Establishing the Groundwork 138
8.2.1 Identifying Stakeholders 139
8.2.2 Recognizing Multiple Viewpoints 139
8.2.3 Working toward Collaboration 140
8.2.4 Asking the First Questions 140
8.2.5 Nonfunctional Requirements 141
8.2.6 Traceability 142

8.3 Eliciting Requirements 142
8.3.1 Collaborative Requirements Gathering 143
8.3.2 Quality Function Deployment 146
8.3.3 Usage Scenarios 146
8.3.4 Elicitation Work Products 147
8.3.5 Agile Requirements Elicitation 148
8.3.6 Service-Oriented Methods 148

8.4 Developing Use Cases 149

8.5 Building the Analysis Model 154
8.5.1 Elements of the Analysis Model 154
852 Analysis Patterns 157
8.5.3 Agile Requirements Engineering 158
8.54 Requirements for SelFAdaptive Systems 158

8.6 Negotiating Requirements 159

TABLE OF CONTENTS

8.7 Requirements Monitoring 160

8.8 Validating Requirements 161

8.9 Avoiding Common Mistakes 162

8.10 Summary 162

PROBLEMS AND POINTS TO PONDER 163

FURTHER READINGS AND OTHER INFORMATION SOURCES 164

CHAPTER 9 REQUIREMENTS MODELING: SCENARIO-BASED
METHODS 166

Q.1 Requirements Analysis 167
Q.11 Overall Objectives and Philosophy 168
9.1.2 Analysis Rules of Thumb 169
2.1.3 Domain Analysis 170
Q.14 Requirements Modeling Approaches 171

Q.2 ScenarioBased Modeling 173
9.2.1 Creating a Preliminary Use Case 173
9.2.2 Refining a Preliminary Use Case 176
9.2.3 Writing a Formal Use Case 177

Q.3 UML Medels That Supplement the Use Case 179
9.3.1 Developing an Activity Diagram 180
9.3.2 Swimlane Diagrams 181

Q.4 Summary 182

PROBIEMS AND POINTS TO PONDER 182

FURTHER READINGS AND INFORMATION SOURCES 183

CHAPTER 10 REQUIREMENTS MODELING: CLASS-BASED METHODS

184

10.1 Identifying Analysis Classes 185

10.2 Specilying Affributes 188

10.3 Defining Operations 189

10.4 ClassResponsibility-Collaborator Modeling 192
10.5 Associafions and Dependencies 198

10.6 Analysis Packages 199

10.7 Summary 200

PROBLEMS AND POINTS TO PONDER 201

FURTHER READINGS AND INFORMATION SOURCES 201

CHAPTER 11 REQUIREMENTS MODELING: BEHAVIOR, PATTERNS,
AND WEB/MOBILE APPS 202

11.1 Creafing a Behavioral Model 203
11.2 Identifying Events with the Use Case 203
11.3 State Representations 204
114 Pattems for Requirements Modeling 207
11.4.1 Discovering Analysis Patierns 208
11.4.2 A Requirements Pattern Example: Actuator-Sensor 209
11.5 Requirements Modeling for Web and Mobile Apps 213
11.5.1 How Much Analysis Is Enough2 214
11.5.2 Requirements Modeling Input 214
11.5.3 Requirements Modeling Output 215
11.54 Confent Model 216

