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Preface

This volume contains six review articles on diverse topics that have become
of particular interest to optical scientists and optical engineers in recent years.

The first article, by N. Davidson and N. Bokor, reviews researches on the
anamorphic shaping of laser beams and of diffuse light whose input or output
1s substantially elongated along one direction. Such elongated beams have come
to be of special interest in recent years with the appearance of high-power laser
diode bars, whose excellent properties are offset by their poor beam quality and
by the fact that the output beam profile i1s highly anamorphic (with typical aspect
ratio 1000:1) and hence unsuitable for many applications. Several techniques
have been developed to collimate and shape the output beams of such laser
diode bars into symmetric spots. Anamorphic beam shaping has also been
used to concentrate symmetrical fields such as solar radiation into very narrow
lines, for use in heating water pipes, for side-pumping solar lasers, and In
optical metrology (e.g. for improving resolution in surface profile measurement
and high-resolution spectrometry). The article presents a review of the main
reflective, refractive, diffractive, and adiabatic techniques for anamorphic beam
characterization.

The second article, by 1. Glesk, B.C. Wang, L. Xu, V. Baby and PR. Prucnal,
presents a review of recent progress in the development of ultra-fast all-
optical switching devices with various applications for future optical networks.
The operation principle and performance of different all-optical switches
based on nonlinearities in optical fiber semiconductor optical amplifiers (SOA)
and passive waveguides are discussed. Special attention is paid to interfer-
ometric SOA-based all-optical switches. Several testbed demonstrations are
described.

The next article, by J. Yin, W. Gao and Y. Zhu, 1s concerned with the
generation of dark hollow beams and their applications. Such beams have been
used to form optical pipes, optical tweezers, atomic pipes, atomic tweezers,
atomic refrigerators, and atomic motors. They can be applied 1n the accurate,
non-contact manipulation and control of microscopic particles, such as biological
cells, neutral atoms and molecules. The principles and experimental methods for
generating various types of dark hollow beams are discussed. Applications of
such beams in optical traps for microscopic particles including biological cells
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are also discussed, as are recent studies of dark hollow beams in atom optics
and coherent matter-wave optics.

The fourth article, by D.J. Gauthier, presents a review of a new type of
quantum oscillator known as two-photon laser. Such devices are based on two-
photon stimulated emission processes whereby two photons incident on an
atom 1nduce 1t to drop to a lower energy state and four photons are scattered.
This kind of laser has been realized only relatively recently by combining
cavity quantum electrodynamics experimental techniques with novel nonlinear
optical interactions. Research on two-photon quantum processes, leading to the
development and characterization of two-photon masers and lasers, 1s discussed.
The unusual quantum-statistical and nonlinear dynamical properties predicted
for the device are also reviewed.

The subsequent article, by G. Gbur, discusses a rather old but poorly
understood subject, the so-called non-radiating sources and the related concept of
non-visible objects. These are certain extended charge-current distributions that
may oscillate without generating radiation. Such sources have many intriguing
mathematical and physical properties whose existence is intimately related to
nonuniqueness of the solution of the so-called inverse source problem. The
current state of understanding of such sources 1s discussed and they are compared
with other classes of “invisible objects”.

The concluding article, by H. Cao, 1s concerned with random lasers. These
are unconventional lasers whose feedback i1s provided by disorder-induced
scattering. Random lasers may be separated into two categories: those with
coherent feedback and those with incoherent feedback. In this article both
types are discussed, as well as measurements of a variety of properties ot such
devices, such as the lasing threshold, lasing spectra, emission pattern, dynamical
response, photon statistics and speckle patterns. Furthermore, investigations
regarding the relevant length scales are described. Large disorder in the lasing
material leads to spatial confinement of the lasing modes, which 1s the foundation
for the micro-random laser. Some theoretical models of random lasers with
coherent feedback are briefly introduced. Such research helps the understanding
of the interplay between light localization and coherent amplification.

In view of the broad coverage presented in this volume, 1t is hoped that many
readers will find in it something that is of particular interest to them.

Emil Wolf
Department of Physics and Astronomy
and the Institute of Optics

University of Rochester
Rochester, NY 14627, USA

April 2003
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§ 1. Introduction

Beam shaping constitutes a large and important field in optics. For many
applications the beam must be shaped in one transverse direction substantially
differently than in the other transverse direction. In what follows, the term
anamorphic beam shaping designates techniques in which the one-dimensional
beam quality 1in one transverse direction 1s improved at the expense of
reducing the one-dimensional beam quality in the orthogonal direction. In a
broader sense, techniques for one-dimensional beam shaping would include one-
dimensional concentration of diffuse light with a curved diffractive element
(Bokor, Shechter, Friesem and Davidson [2001], Bokor and Davidson [2001c,
2002b]) and one-dimensional diffuse beam shaping using a single reflection
on a curved step mirror (Bokor and Davidson [2001a]). The simplest element
capable of one-dimensional beam shaping 1s a cylindrical lens. In the examples
listed above the one-dimensional beam-quality factors in the two orthogonal
transverse directions remain the same. In this article we will not consider such
techniques. Comprehensive reviews on concentration of diffuse beams, with
special emphasis on non-imaging concentrators and solar energy applications,
have been provided by Winston and Welford [1989] and Bassett, Welford and
Winston [1989].

1.1. Diffuse light and its phase-space representation

We first define a number of concepts related to diffuse light. The term diffuse
light refers to beams for which the diffraction-limited angles and spot sizes are
much smaller than the diffusive ones. This means that the transverse (spatial)
coherence length of the beam is much smaller than its size, and that we can
use the geometrical optics approximation and ray-tracing techniques to describe
the beam propagation. The longitudinal (temporal) coherence is less relevant
to the scope of this chapter, except when a broad wavelength range may cause
considerable chromatic aberrations, in particular for diffractive optical elements.
An effectively spatially incoherent, diffuse light can be formed even for laser
experiments, by sending the laser beam through a rotating diffuser.



4 Anamorphic beam shaping for laser and diffuse light [1,§ 1

Following Winston and Welford [1989], we define the four-dimensional phase-
space volume (PSV) (often referred to as “étendue”) of a diffuse beam as

PSV = / / / / dx’ dy’ d(sin o) d(sin @), (1.1)

X YV sin @ sin @,

where x and y are the sizes, and «, and a, the diffusive angles, of the beam in
two orthogonal directions (x and y are perpendicular to the direction of beam
propagation). For a beam with uniform and space-invariant diffusivity (explained
below) we define the phase-space areas (PSAs) in the x- and y-directions as
follows:

PSA, = /7 x sin a,, PSA, = V@ ysinq,. (1.2)

Note that, in general, a diffuse beam 1s represented by a non-uniform distri-
bution function /(x,y, a, &, ) in four-dimensional phase-space. Space-invariant
diffusivity means that the distribution function can be written as a product of two
distributions: /1(x,y) - (., a,). In this chapter we will mostly assume uniform
distributions with Cartesian symmetry that are thus characterized by the four
quantities x, y, &, and a,. This largely simplifies the notation and captures most
of the basic effects and 1deas that we will describe. For the extension to non-
uniform distributions (which are quite common in practice), the distribution as
well as the conservation laws should be described in different terms than in the
uniform case, e.g., by the RMS sizes of the distribution function.
Optical brightness 1s defined as:

B 2
= E
where P 1s the optical power transmitted by the beam. A fundamental
conservation law — closely related to the second Law of thermodynamics — states
that for spatially incoherent light and passive optical transtormations B cannot
increase. In the optimal case brightness is conserved. For lossless transformations
P 1s constant and the conservation of brightness implies a conservation of PSV.
This so-called étendue invariance (Winston and Welford [1989]) 1s the main
guiding principle in the design of diffuse beam-shaping techniques.
In the paraxial approximation [sin a, < 1; sin a,, < 1] the PSV can be written
as

(1.3)

PSV ~ AQ, (1.4)

where €2 1s the solid angle of divergence and A 1s the cross-sectional area of the
beam. Recently it was proposed that the notation M* should be used to describe
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Fig. 1.1. Phase-space representation of a space-invariant, uniform, rectangular diffuse beam: the size
of the rectangle represents the spatial dimensions of the beam, and the length of the arrow for each
direction represents the diffuse angle.

the two-dimensional beam-quality factor, defined in the paraxial case as (Graf
and Balmer [1996]):

AQ
4 __ 2a42 _
M = MIM; = <5, (1.5)

where — in the practical case of quasi-monochromatic beams — A is the center
wavelength, and M and M are the one-dimensional beam-quality values in the
x- and y-directions, respectively, defined as:

]\/[2:.,7{*811'1(3(JE Mzzy'Sll']CL’y
5 G
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It 1s obvious from eqgs. (1.2) and (1.4)—(1.6) that in the paraxial case of a
monochromatic beam the beam-quality factor and the phase-space volume are
equivalent descriptions of the beam. Even in the non-paraxial case the symmetry
condition M? = My2 1s equivalent to the symmetry condition PSA, = PSA,,. Since
all the techniques described below contain these symmetry requirements either
at the input or at the output, we will often use the concepts of M and M in the
text — because of their wide acceptance — even for beams with large diffusive
angles. For diffraction-limited beams — e.g., in the x-direction — M? takes its
optimum value: M? = 1. For diffuse beams M? > 1. Note that the beam qual-
ity M* is related to the focusability of the beam, i.e. it gives the minimum spot
size to which it can be focused, in units of the diffraction-limited area AZ.
Following Davidson and Khaykovich [1999], we now introduce a graphical
method to depict the four-dimensional PSV of a diffuse light distribution.
A beam with a space-invariant diffusivity can be represented with a simple
diagram, as shown 1n fig. 1.1. The spatial dimensions are represented by the
size of the rectangle, and the length of the arrow for each direction represents
the diffuse angle. The beam represented in fig. 1.1, for example, has larger
dimensions in the y-direction than in the x-direction, however, its diffusivity is
larger in the x-direction than in the y-direction. We will use this type of phase-
space representations — called phase-space diagrams — throughout the text.

(1.6)



