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Introduction

In the study of higher categories, dimension three occupies an interesting
position on the landscape of higher dimensional category theory. From the per-
spective of a “hands-on™ approach to defining weak n-categories, tricategories
represent the most complicated kind of higher category that the community at
large seems comfortable working with. On the other hand, dimension three is
the lowest dimension in which strict n-categories are genuinely more restric-
tive than fully weak ones, so tricategories should be a sort of jumping off
point for understanding general higher dimensional phenomena. This work
is intended to provide an accessible introduction to coherence problems in
three-dimensional category.

1 Tricategories

Tricategories were first studied by Gordon, Power, and Street in their 1995
AMS Memoir. They were aware that strict 3-groupoids do not model homotopy
3-types, and thus the aim of their work was to create an explicit defini-
tion of a weak 3-category which would not be equivalent (in the appropriate
three-dimensional sense) to that of a strict 3-category. The main theorem of
Gordon et al. (1995) is often stated: every tricategory is triequivalent to a
Gray-category. Triequivalence is a straightforward generalization of the usual
notion that two categories are equivalent when there is a functor between them
which is essentially surjective, full, and faithful. The new and interesting fea-
ture of this result is the appearance of Gray-categories. These are categories
which are enriched over the monoidal category Gray; this monoidal category
has the category of 2-categories and strict 2-functors as its underlying cat-
egory, but its monoidal structure is not the Cartesian one. Gray-categories
can thus be viewed as a maximally strict yet still completely general form
of weak 3-category, and it is known, for instance, that Gray-groupoids model
all homotopy 3-types.



2 Introduction

My interest in tricategories began while carrying out joint work with
Eugenia Cheng on the Stabilization Hypothesis of Baez and Dolan. The
Stabilization Hypothesis roughly states that k-degenerate weak (n + k)-
categories correspond to what they called k-tuply monoidal n-categories. Here,
k-degenerate means that the (n + k)-categories only have a single O-cell, sin-
gle 1-cell, and so on, up to having only a single (k — 1)-cell: thus the bottom
k dimensions are degenerate. A k-tuply monoidal n-category is one which is
monoidal, and as k increases that monoidal structure becomes more and more
commutative until it stabilizes when & = n + 2. Some relevant examples to
keep in mind are

e the case k = 1,n = 0 gives l-degenerate categories (categories with a
single object) on the one hand or 1-tuply monoidal O-categories (sets with
an associative and unital multiplication) on the other hand; and

e fixing n = 1 we get weak 2-categories with a single object, weak
3-categories with a single object and single 1-cell, and weak 4-categories
with a single object, 1-cell, and 2-cell on the one hand and monoidal cate-
gories, braided monoidal categories, and symmetric monoidal categories on
the other hand.

The Stabilization Hypothesis is a guiding principle of higher category the-
ory, yet we found that no systematic study of low dimensional cases had been
carried out.

As had already been discovered by Tom Leinster, k-degenerate (n + k)-
categories and k-tuply monoidal n-categories were not precisely the same
structures, at least when using the explicit, algebraic notions of weak
n-category. As an example, a bicategory with a single object and single 1-cell
is not only a commutative monoid given by the set of 2-cells I = [ under
composition (where / is the single 1-cell), but is in fact a commutative monoid
equipped with a distinguished invertible element. This element corresponds to
the left (or right, they are equal) unit isomorphism, and satisfies no axioms.
So in fact it is the algebraic nature of the definition of bicategory that creates
this extra piece of data. To carry out the same analysis in dimension three, we
needed a fully algebraic definition of tricategory, and the definition of Gordon,
Power, and Street was only partially algebraic.

The original definition was partially algebraic because it included data hav-
ing certain properties but not the data necessary to check those properties. In
particular, the associativity equivalence for 1-cell composition is a 2-cell

aper  h®VfF=>h®(E®f),
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2 Gray-monads

but the original definition did not include a 2-cell aj, , ¢ nor invertible 3-cells
1 = Ajy o7 ©hg [ Chg.f O, f = 1 verifying that the 2-cell a ¢ ¢ was
an equivalence. While this seems like a minor technical point, it does have an
impact on how one goes about manipulating tricategories and the cells between
them. Making an algebraic definition was necessary for an examination of the
structures in the Stabilization Hypothesis, but one also requires a choice of the
cells aj, 8.f in order to define a composition law on transformations between
functors of tricategories.

These concerns led me to consider a fully algebraic definition of tricate-
gory in my 2006 University of Chicago Ph.D. thesis. While the changes to
the definition are minor, they do allow the definition of more constructions
on tricategories such as functor tricategories and an explicit strictification. The
most important difference from the partially algebraic case is how coherence is
approached. While both proofs of coherence for tricategories involve embed-
ding a tricategory in a Gray-category, the fully algebraic definition makes
more direct use of a Yoneda embedding, much like how coherence for bicat-
egories is usually proved. Continuing to employ techniques similar to those
used in the case of bicategories, it is also possible to use the fully algebraic
definition to prove a coherence theorem for functors.

Tricategories have appeared in more applications recently, particularly
in topological applications. Carrasco, Cegarra, and Garzon (2011) study a
Grothendieck construction for diagrams of bicategories (of which tricategories
are an example) in order to understand the classifying spaces of braided
monoidal categories. Lack (2011) has constructed a model category struc-
ture on the category of Gray-categories and Gray-functors that restricts to a
model structure on Gray-groupoids. With these model structures in hand, Lack
goes on to prove that Gray-groupoids model homotopy 3-types. My paper
(Gurski 2011) proves a coherence theorem for braided monoidal bicategories
that uses tricategorical techniques in a number of ways.

2 Gray-monads

The study of Gray-monads and their algebras has two distinct sides, reminis-
cent of the study of 2-monads. First, Gray-monads are just monads enriched
over the monoidal category Gray, and thus carry with them the usual struc-
ture associated to enriched monads. The category Gray of 2-categories and
2-functors, but equipped with the Gray-tensor product, has many pleasant
properties so we can reproduce many of the usual constructions from monad
theory such as Eilenberg—Moore objects for a Gray-monad. The second half
of the story for Gray-monads is the three-dimensional picture, consisting of
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many different kinds of algebras and maps that all take advantage of the higher
dimensional nature of a Gray-category. This side of the picture is much more
complicated in terms of data and axioms, but the objects that arise from it are
much more interesting from the perspective of applications in other parts of
higher dimensional category theory. Comparing these two aspects of the theory
of Gray-monads is the study of a very general kind of coherence question.

This form of coherence goes back to the seminal work Two-dimensional
Monad Theory by Blackwell, Kelly, and Power (1989). That paper was con-
cerned with 2-monads, and studied the two-dimensional aspects using the more
widely understood Cat-enriched theory for comparison. The basic situation
was as follows. Let A be a 2-category, and 7" a 2-monad (i.e., Cat-enriched
monad) on it; a simple example to keep in mind is when A = Cat and 7 is
the 2-monad for strict monoidal categories. We can now form (at least) three
different 2-categories: the 2-category A’ which is the Eilenberg—Moore object
in the enriched sense, the 2-category 7-Alg of algebras with pseudo-algebra
morphisms, and the 2-category T-Alg,; of algebras with lax algebra morphisms.
Each of these 2-categories has the same objects, and there are inclusions

AT < T-Alg < T-Alg

which are locally full on 2-cells. The first main result of Blackwell ef al. (1989)
is that, under some conditions on A and 7', the inclusions

AT < T-Alg, AT < T-Alg

each have a left 2-adjoint. The image of an object X under this left adjoint is
often denoted X', and the one-dimensional aspect of this 2-adjunction states
that “weak” algebra maps (either pseudo-algebra morphisms or lax algebra
morphisms, depending on the particular example) X — Y are in bijection
with algebra morphisms X’ — Y in the usual sense of monad theory.

What I have described so far is in fact the most basic situation, and we
can consider more complicated scenarios in which not only are the morphisms
allowed to be weakened, but so is the notion of algebra as well. Once again
there will be an inclusion of AT into whatever 2-category of algebras we
choose to study, and it is possible to give conditions under which this inclusion
has a left 2-adjoint X +— X’. The unit of this adjunction will be a morphism
X — X', and it is also possible to give conditions under which these com-
ponents are equivalences. In other words, this very abstract form of coherence
can often be used to derive the usual kinds of coherence theorems such as
coherence for monoidal categories.

The conditions on the 2-category A and the 2-monad 7' to ensure that these
inclusions have a left adjoint, and then perhaps to show that the unit of the
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adjunction has components which are equivalences, are conditions about the
existence of certain kinds of two-dimensional limits and colimits in A together
with the requirement that 7" preserve some of these. The most complete treat-
ment of this perspective can be found in Codescent Objects and Coherence by
Steve Lack (2002a). In this paper, Lack shows how the most important col-
imit to consider is that of the codescent object which plays the role of a kind
of two-dimensional coequalizer. Understanding codescent object turns out to
be essential in studying coherence through this kind of strategy (i.e., by con-
structing a left adjoint to the inclusion of the “strict algebra case” into some
larger 2-category with weaker objects and/or morphisms), and leads to theo-
rems about the existence of the left adjoint as well as showing the components
of the unit are equivalences.

Far less has been studied in the three-dimensional world. The only work
thusfar in this direction is a paper of John Power’s (2007) in which he begins
the study of Gray-monads and their algebras. Here, the basic objects of study
are Gray-categories equipped with a Gray-monad; examples are much harder
to come by, but one to keep in mind is that of 2-categories equipped with a
choice of flexible limits or colimits. The work of Power should be seen as
the analogue of many parts of the original paper of Blackwell-Kelly—Power,
and he proves many of the same basic theorems. He establishes the notions of
weak or lax algebra maps, together with the higher cells between them, and
proves that these form a Gray-category containing the usual enriched cate-
gory of algebras. Under some cocompleteness conditions, he proves that the
inclusion of algebras with strict maps into algebras with weak maps has a left
adjoint, and using pseudo-limits of arrows he gives a sufficient condition for
the unit of this adjunction to have components which are internal biequiva-
lences. He does not, however, pursue these using codescent techniques, but
does remark that such a strategy might be useful for a complete understanding
of coherence problems in dimension three.

3 An outline

This book is aimed at being a basic guide to coherence problems in three-
dimensional category theory. From the above discussion, it should not be
surprising that this is split into two parts. In the first part, we will discuss the
coherence theorem for tricategories and the related result for functors; much
of this material has been adapted from my 2006 Ph.D. thesis. The second part
focuses on the general coherence problem for algebras over a Gray-monad
using codescent methods. Just as Lack’s paper can be seen as a refinement of
the basic results in Blackwell-Kelly—Power, the results in the second half of
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this work can be seen as a refinement of Power’s (2007) results. It is the inten-
tion that this book can be read without any prior experience with tricategories
or Gray-categories, and I have included background material in an attempt to
keep this book self-contained. The only exception is the inclusion of some cal-
culational results that were proved by Gordon er al. (1995) and are of general
use in the proofs leading up to the coherence theorem for tricategories. Most of
these calculations are omitted because of the size of the diagrams involved so
it might not be clear how these results might be used, but they are quite useful
for performing many of these computations. Here is a detailed outline of what
is to come.

First, I will give some background information and establish notation. Since
tricategories and Gray-categories have three different composition operations
on 3-cells, it is important to establish clear notation early on. With this in mind,
I will use some slightly non-standard notation even at the level of bicategories
which can then easily be augmented when moving to the three-dimensional
world later on. It is also important to keep in mind that at each dimension
there are choices to be made about the canonical direction of the data present
in many different definitions. With this in mind, I will follow Gordon—Power—
Street in using the oplax direction for transformations as the default notion
although in practice this has little bearing since we will be more interested in
the pseudo-natural rather than the lax case. I will also recall the concept of
an icon, and remind the reader of the necessary calculational results from the
theory of mates that will be useful later.

The second piece of background material I will discuss is coherence for
bicategories. I will present a number of formulations of this theorem, and
will follow the strategy used by Joyal and Street (1993) to prove these dif-
ferent incarnations of coherence. Their approach provides a solid framework
for proving coherence for functors as well, and it is this feature in particular
that will be important later as the original work of Gordon—Power—Street did
not have a proof of coherence for functors between tricategories.

The final section of background will be a discussion of the Gray-tensor
product and Gray-categories. 1 will present many different ways of think-
ing about the Gray-tensor product, but will give very few proofs. My goal
is less to give a fully rigorous account of this monoidal structure on the cat-
egory of 2-categories and 2-functors and more to provide the reader with a
basic understanding coupled with some intuition on how to manipulate these
structures. Gray-categories will feature prominently in the rest of this work,
and while the rules for working in a Gray-category are not much more com-
plicated than those for working in a strict 2- or strict 3-category, there are
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some important differences to keep in mind while doing calculations inside an
arbitrary Gray-category.

With the background completed, we are ready to move on to discussing tri-
categories and their coherence theory. I will begin with the relevant definitions
of tricategories and the higher cells between them. It is at this point that we
diverge slightly from the treatment in Gordon—Power—Street, as the definition
I will give has a bit more structure than the one they work with. The specific
difference between the two definitions is that they require certain transforma-
tions to be equivalences, while I specify an entire adjoint equivalence as part
of the data. This difference does not change the definition in a conceptual way,
but does make more techniques available.

Next I give some basic examples of tricategories and functors between them.
The most important examples are Bicat and Gray, and they occupy the first
part of this chapter. These examples will be used later in the proof of coherence,
and so are worth constructing in detail. Then I give a topological example
which, to my knowledge, has not been explored in the literature thusfar: the
fundamental 3-groupoid of a space. This is a straightforward construction, but
important in studying the relationship between three-dimensional groupoids
and homotopy 3-types.

The next chapter is devoted to a discussion of the many different kinds of
free objects that arise in this theory. There are at least four different types of
graphs from which we can generate free tricategories or Gray-categories, and
this section is devoted to cataloguing all of the free constructions on these
different types of underlying data. It is actually at this point that the change
in the definition of tricategory makes its (technical) appearance, as it is simple
to freely generate an adjoint equivalence while it is not clear what it would
mean to freely generate an equivalence. This chapter also begins the discussion
of the category of tricategories and strict functors; this requires some care,
as the composition law in this category does not give the same result as the
composition of strict functors gua weak functors.

I will then discuss some of the basic constructions that would go into making
a weak four-dimensional category Tricat. In particular, I will give construc-
tions of some composites of higher cells. Since this is largely a matter of
bookkeeping, I will only define the composites that we need later; thus the
first obstruction to finishing the definition of Tricat is to define a few more
kinds of composition. The second obstruction is providing all the rest of the
data, including things like associators and unit constraints for each of the
different levels of composition. This has to all be packaged to give a composi-
tion functor between tricategories, with associativity and unit transformations,
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and so on, and each piece of data here has components which are themselves
transformations, etc., at which point it becomes clear that constructing Tricat
by hand, without any tools, is a huge task that will, most likely, not produce
fruit in proportion to the work required (at least at this stage in the devel-
opment of the theory). I would also like to point out that the changes in the
definitions that I have made affect this section as well. Defining some of
these composites actually requires using the pseudo-inverses of the data in
the Gordon—Power—Street definition of a tricategory, so Gordon et al. (1995)
defined these composites only up to some ambiguity. This is the benefit of
making the definitions fully algebraic: whenever you want to define a new con-
struction, every piece of data you might want is already on hand. The downside,
of course, is that the things you are defining become much more complicated.
In this case, though, the complications are all of a computational rather than
conceptual nature, and I believe that the drawback of having longer defini-
tions is offset by being able to follow a more satisfying strategy for proving
coherence.

The next chapter details how Gray-categories can be seen as examples of
tricategories. Here 1 will also explore the intermediate notion of a cubical
tricategory. This notion is important because it provides a stepping stone in
the proof of coherence. The simplest proof that every bicategory is biequiv-
alent to a 2-category employs the Yoneda embedding together with the fact
that every functor bicategory of the form [X, K|, where K is a 2-category, is
itself a 2-category. Since the Yoneda embedding lands in a functor bicategory
[B°P, Cat|, and Cat is a 2-category, the strictification result follows, albeit
without a particularly explicit construction of how to strictify a given bicate-
gory. If we tried to follow the same idea for tricategories, we would land in a
functor tricategory [7°P, Bicat], but since Bicat is not a Gray-category, this
would not produce the desired result. Thus we seem to need a bit more struc-
ture on the tricategory 7 to use Yoneda for the proof of coherence, and this
extra structure is that of a cubical tricategory.

With this Yoneda-style proof in mind, Chapter 9 begins with the construc-
tion of functor tricategories when the target is a Gray-category. Since the
functor tricategory inherits the compositional structure of the target, it also
becomes a Gray-category. We will see this directly, although Power (2007)
also notes that something very close to this structure can be constructed using
pseudo-algebras for a particular Gray-monad. | will also note that this cor-
rects a mistake of Crans (1999). Finally, it is time to construct an appropriate
Yoneda embedding. Here we restrict ourselves to the case that the tricate-
gory in question is cubical, as this will produce a Yoneda embedding of the
form 7" < [T°P, Gray], which by previous results is a Gray-category itself.



