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Preface

The Twenty-Fourth British Combinatorial Conference was organised by
Royal Holloway, University of London. It was held in Egham, Surrey
in July 2013. The British Combinatorial Committee had invited nine
distinguished combinatorialists to give survey lectures in areas of their
expertise, and this volume contains the survey articles on which these
lectures were based.

In compiling this volume we are indebted to the authors for preparing
their articles so accurately and professionally, and to the referees for
their rapid responses and keen eye for detail. We would also like to
thank Roger Astley and Sam Harrison at Cambridge University Press
for their advice and assistance.

Finally, without the previous efforts of editors of earlier Surveys and
the guidance of the British Combinatorial Committee, the preparation
of this volume would have been daunting: we would like to express our
thanks for their support.

Simon R. Blackburn, Stefanie Gerke and Mark Wildon
Royal Holloway, University of London

January 2013
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Graph removal lemmas

David Conlon! and Jacob Fox?

Abstract

The graph removal lemma states that any graph on n vertices
with o(n") copies of a fixed graph H on h vertices may be made H-
free by removing o(n?) edges. Despite its innocent appearance, this
lemma and its extensions have several important consequences in
number theory, discrete geometry, graph theory and computer sci-
ence. In this survey we discuss these lemmas, focusing in particular
on recent improvements to their quantitative aspects.

1 Introduction

The triangle removal lemma states that for every € > 0 there exists
§ > 0 such that any graph on n vertices with at most dn?® triangles may be
made triangle-free by removing at most en? edges. This result, proved by
Ruzsa and Szemerédi [94] in 1976, was originally stated in rather different
language.

The original formulation was in terms of the (6,3)-problem.> This
asks for the maximum number of edges f(*)(n,6,3) in a 3-uniform hyper-
graph on n vertices such that no 6 vertices contain 3 edges. Answering
a question of Brown, Erdés and Sés [19], Ruzsa and Szemerédi showed
that f®)(n,6,3) = o(n?). Their proof used several iterations of an early
version of Szemerédi’s regularity lemma [111].

This result, developed by Szemerédi in his proof of the Erdds-Turan
conjecture on arithmetic progressions in dense sets [110], states that every
graph may be partitioned into a small number of vertex sets so that the
graph between almost every pair of vertex sets is random-like. Though
this result now occupies a central position in graph theory, its importance
only emerged over time. The resolution of the (6,3)-problem was one of
the first indications of its strength.

ISupported by a Royal Society University Research Fellowship.

2Qupported by a Simons Fellowship and NSF Grant DMS-1069197.

3The two results are not exactly equivalent, though the triangle removal lemma
may be proved by their method. A weak form of the triangle removal lemma, already
sufficient for proving Roth’s theorem, is equivalent to the Ruzsa-Szemerédi theorem.
This weaker form states that any graph on n vertices in which every edge is contained
in exactly one triangle has o(n?) edges. This is also equivalent to another attractive
formulation, known as the induced matching theorem. This states that any graph on
n vertices which is the union of at most n induced matchings has o(n?) edges.



2 D. Conlon and J. Fox

The Ruzsa-Szemerédi theorem was generalized by Erdds, Frankl and
Rodl [32], who showed that f(")(n,3r—38,3) = o(n?), where f(")(n, 3r—3,3)
is the maximum number of edges in an r-uniform hypergraph such that
no 3r — 3 vertices contain 3 edges. One of the tools used by Erdés, Frankl
and Rodl in their proof was a striking result stating that if a graph on
n vertices contains no copy of a graph H then it may be made K, -free,
where r = y(H) is the chromatic number of H, by removing o(n?) edges.
The proof of this result used the modern formulation of Szemerédi’s reg-
ularity lemma and is already very close, both in proof and statement, to
the following generalization of the triangle removal lemma, known as the
graph removal lemma.* This was first stated explicitly in the literature by
Alon, Duke, Lefmann, Rédl and Yuster [4] and by Fiiredi [47] in 1994.5

Theorem 1.1 For any graph H on h vertices and any € > 0, there exists
§ > 0 such that any graph on n vertices which contains at most én" copies
of H may be made H-free by removing at most en® edges.

It was already observed by Ruzsa and Szemerédi that the (6, 3)-problem
(and, thereby, the triangle removal lemma) is related to Roth’s theorem
on arithmetic progressions [92]. This theorem states that for any § > 0
there exists an ng such that if n > ng, then any subset of the set [n] :=
{1,2,...,n} of size at least dn contains an arithmetic progression of length
3. Letting r3(n) be the largest integer such that there exists a subset
of the set {1,2,...,n} of size r3(n) containing no arithmetic progression
of length 3, this is equivalent to saying that r3(n) = o(n). Ruzsa and
Szemerédi observed that f©®)(n,6,3) = Q(rz(n)n). In particular, since
f®)(n,6,3) = o(n?), this implies that r3(n) = o(n), yielding a proof of
Roth’s theorem.

It was further noted by Solymosi [105] that the Ruzsa-Szemerédi theo-
rem yields a stronger result of Ajtai and Szemerédi [1]. This result states
that for any § > 0 there exists an ng such that if n > ng then any sub-
set of the set [n] x [n] of size at least dn? contains a set of the form
{(a,b),(a + d,b),(a,b + d)} with d > 0. That is, dense subsets of the

4The phrase ‘removal lemma’ is a comparatively recent coinage. It seems to have
come into vogue in about 2005 when the hypergraph removal lemma was first proved
(see, for example, [68, 79, 107, 113]).

5This was also the first time that the triangle removal lemma was stated explicitly,
though the weaker version concerning graphs where every edge is contained in exactly
one triangle had already appeared in the literature. The Ruzsa-Szemerédi theorem was
usually [40, 41, 46] phrased in the following suggestive form: if a 3-uniform hypergraph
is linear, that is, no two edges intersect on more than a single vertex, and triangle-free,
then it has o(n?) edges. A more explicit formulation may be found in [23].
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2-dimensional grid contain axis-parallel isosceles triangles. Roth’s theo-
rem is a simple corollary of this statement.

Roth’s theorem is the first case of a famous result known as Szemerédi’s
theorem. This result, to which we alluded earlier, states that for any natu-
ral number £ > 3 and any J > 0 there exists ng such that if n > ng then any
subset of the set [n] of size at least dn contains an arithmetic progression
of length k. This was first proved by Szemerédi [110] in the early seventies
using combinatorial techniques and since then several further proofs have
emerged. The most important of these are that by Furstenberg [48, 50]
using ergodic theory and that by Gowers [54, 55], who found a way to
extend Roth’s original Fourier analytic argument to general k. Both of
these methods have been highly influential.

Yet another proof technique was suggested by Frankl and Rodl [42].
They showed that Szemerédi’s theorem would follow from the following
generalization of Theorem 1.1, referred to as the hypergraph removal
lemma. They proved this theorem for the specific case of K ,§3), the com-
plete 3-uniform hypergraph with 4 vertices. This was then extended to all
3-uniform hypergraphs in [78] and to K §4) in [90]. Finally, it was proved
for all hypergraphs by Gowers [56, 57] and, independently, by Nagle, Rodl,
Schacht and Skokan [79, 89]. Both proofs rely on extending Szemerédi’s
regularity lemma to hypergraphs in an appropriate fashion.

Theorem 1.2 For any k-uniform hypergraph H on h vertices and any
e > 0, there exists § > 0 such that any k-uniform hypergraph on n vertices
which contains at most dn" copies of H may be made H-free by removing
at most en® edges.

As well as reproving Szemerédi’s theorem, the hypergraph removal
lemma allows one to reprove the multidimensional Szemerédi theorem.
This theorem, originally proved by Furstenberg and Katznelson [49], states
that for any natural number r, any finite subset S of Z" and any § > 0
there exists ng such that if n > ng then any subset of [n]" of size at least
on” contains a subset of the form a-S-+d with @ > 0, that is, a dilated and
translated copy of S. That it follows from the hypergraph removal lemma
was first observed by Solymosi [106]. This was the first non-ergodic proof
of this theorem. A new proof of the special case S = {(0,0), (1,0),(0,1)},
corresponding to the Ajtai-Szemerédi theorem, was given by Shkredov
[103] using a Fourier analytic argument. Recently, a combinatorial proof
of the density Hales-Jewett theorem, which is an extension of the multi-
dimensional Szemerédi theorem, was discovered as part of the polymath
project [82].
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As well as its implications in number theory, the removal lemma and its
extensions are central to the area of computer science known as property
testing. In this area, one would like to find fast algorithms to distinguish
between objects which satisfy a certain property and objects which are
far from satisfying that property. This field of study was initiated by
Rubinfield and Sudan [93] and, subsequently, Goldreich, Goldwasser and
Ron [52] started the investigation of such property testers for combinato-
rial objects. Graph property testing has attracted a particular degree of
interest.

A classic example of property testing is to decide whether a given graph
G is e-far from being triangle-free, that is, whether at least en? edges will
have to removed in order to make it triangle-free. The triangle removal
lemma tells us that if G is e-far from being triangle free then it must
contain at least dn® triangles for some d > 0 depending only on &. This
furnishes a simple probabilistic algorithm for deciding whether G is e-far
from being triangle-free. We choose t = 2§~ triples of points from the
vertices of GG uniformly at random. If G is e-far from being triangle-free
then the probability that none of these randomly chosen triples is a triangle
is(1-6)f<e® < % That is, if G is e-far from being triangle-free, we
will find a triangle with probability at least %, whereas if (7 is triangle-free,
we will clearly find no triangles. The graph removal lemma may be used
to derive a similar test for deciding whether G is e-far from being H-free
for any fixed graph H.

In property testing, it is often of interest to decide not only whether a
graph is far from being H-free but also whether it is far from being induced
H-free. A subgraph H’ of a graph G is said to be an induced copy of H if
there is a one-to-one map f : V(H) — V(H') such that (f(u), f(v)) is an
edge of H' if and only if (u,v) is an edge of H. A graph G is said to be
induced H-free if it contains no induced copies of H and e-far from being
induced H-free if we have to add and/or delete at least en? edges to make
it induced H-free. Note that it is not enough to delete edges since, for
examnple, if H is the empty graph on two vertices and G is the complete
graph minus an edge, then G contains only one induced copy of H, but
one cannot simply delete edges from G to make it induced H-free.

By proving an appropriate strengthening of the regularity lemma, Alon,
Fischer, Krivelevich and Szegedy [6] showed how to modify the graph
removal lemma to this setting. This result, which allows one to test for
induced H-freeness, is known as the induced removal lemma.

Theorem 1.3 For any graph H on h vertices and any & > 0, there exists a
§ > 0 such that any graph on n vertices which contains at most én"* induced
copies of H may be made induced H -free by adding and/or deleting at most
en? edges.
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A substantial generalization of this result, known as the infinite removal
lemma, was proved by Alon and Shapira [12] (see also [76]). They showed
that for each (possibly infinite) family H of graphs and € > 0 there is
d = dy(g) > 0 and t = ty(¢) such that if a graph G on n vertices contains
at most on” induced copies of H for every graph H in H on h < t vertices,
then G may be made induced H-free, for every H € H, by adding and/or
deleting at most en? edges. They then used this result to show that every
hereditary graph property is testable, where a graph property is hereditary
if it is closed under removal of vertices. These results were extended to
3-uniform hypergraphs by Avart, Rodl and Schacht [14] and to k-uniform
hypergraphs by Rodl and Schacht [87].

In this survey we will focus on recent developments, particularly with
regard to the quantitative aspects of the removal lemma. In particular,
we will discuss recent improvements on the bounds for the graph removal
lemma, Theorem 1.1, and the induced graph removal lemma, Theorem 1.3,
each of which bypasses a natural impediment.

The usual proof of the graph removal lemma makes use of the regularity
lemma and gives bounds for the removal lemma which are of tower-type in
e. To be more specific, let T'(1) = 2 and, for each i > 1, T(i + 1) = 270,
The bounds that come out of applying the regularity lemma to the removal
lemma then say that if 5~ = T'(¢~°#), then any graph on n vertices with
at most dn" copies of a graph H on h vertices may be made H-free by
removing at most en® edges. Moreover, this tower-type dependency is
inherent in any proof employing regularity. This follows from an important
result of Gowers [53] (see also [24]) which states that the bounds that arise
in the regularity lemma are necessarily of tower type. We will discuss this
in more detail in Section 2.1 below.

Despite this obstacle, the following improvement was made by Fox [38].

Theorem 1.4 For any graph H on h wvertices, there exists a constant
ay such that if 51 = T'(ayloge™") then any graph on n vertices which
contains at most dn" copies of H may be made H -free by removing at most
en? edges.

As is implicit in the bounds, the proof of this theorem does not make
an explicit appeal to Szemerédi’s regularity lemma. However, many of the
ideas used are similar to ideas used in the proof of the regularity lemma.
The chief difference lies in the fact that the conditions of the removal
lemma (containing few copies of a given graph H) allow us to say more
about the structure of these partitions. A simplified proof of this theorem
will be the main topic of Section 2.2.

Though still of tower-type, Theorem 1.4 improves substantially on
the previous bound. However, it remains very far from the best known
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lower bound on §~'. The observation of Ruzsa and Szemerédi [94] that
f®(n,6,3) = Q(r3(n)n) allows one to transfer lower bounds for r3(n) to a
corresponding lower bound for the triangle removal lemma. The best con-
struction of a set containing no arithmetic progression of length 3 is due to
Behrend [16] and gives a subset of [n] with density e “V™°&8™, Transferring
this to the graph setting yields a graph containing £€1°8¢ '3 triangles
which cannot be made triangle-free by removing fewer than en? edges.
This quasi-polynomial lower bound, §—1 > g—clog 5_1, remains the best
known.®

The standard proof of the induced removal lemma uses the strong
regularity lemma of Alon, Fischer, Krivelevich and Szegedy [6]. We will
speak at length about this result in Section 3.1. Here it will suffice to say
that, like the ordinary regularity lemma, the bounds which an application
of this theorem gives for the induced removal lemma are necessarily very
large. Let W(1) = 2 and, for i > 1, W(i + 1) = T(W(i)). This is
known as the wowzer function and its values dwarf those of the usual
tower function.” By using the strong regularity lemma, the standard proof
shows that we may take 1 = W (aye~¢) in the induced removal lemma,
Theorem 1.3. Moreover, as with the ordinary removal lemma, such a
bound is inherent in the application of the strong regularity lemma. This
follows from recent results of Conlon and Fox [24] and, independently,
Kalyanasundaram and Shapira [62] showing that the bounds arising in
strong regularity are necessarily of wowzer type.

In the other direction, Conlon and Fox [24] showed how to bypass this
obstacle and prove that the bounds for ! are at worst a tower in a power
of 71,

Theorem 1.5 There exists a constant ¢ > 0 such that, for any graph H
on h vertices, there exists a constant ay such that if ' = T(age™°)
then any graph on n vertices which contains at most dn" induced copies
of H may be made induced H-free by adding and/or deleting at most en?
edges.

61t is worth noting that the best known upper bound for Roth’s theorem, due to
Sanders [96], is considerably better than the best upper bound for r3(n) that follows

5
from triangle removal. This upper bound is r3g(n) = O (Mn) A recent result

logn

of Schoen and Shkredov [100], building on further work of Sanders [97], shows that any

subset of [n] of density e Totogw) /0 contains a solution to the equation x4+ -+x5 =
5xg. Since arithmetic progressions correspond to solutions of x1 + zo = 23, this
suggests that the answer should be closer to the Behrend bound. The bounds for
triangle removal are unlikely to impinge on these upper bounds for some time, if at all.

"To give some indication, we note that W (2) = 4, W (3) = 65536 and W (4) is a
tower of 2s of height 65536.
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A discussion of this theorem will form the subject of Section 3.2. The
key observation here is that the strong regularity lemma is used to prove an
intermediate statement (Lemma 3.2 below) which then implies the induced
removal lemma. This intermediate statement may be proved without re-
course to the full strength of the strong regularity lemma. There are also
some strong parallels with the proof of Theorem 1.4 which we will draw
attention to in due course.

In Section 3.3, we present the proof of Alon and Shapira’s infinite
removal lemma. In another paper, Alon and Shapira [11] showed that the
dependence in the infinite removal lemma can depend heavily on the family
H. They proved that for every function § : (0,1) — (0,1), there exists a
family 2 of graphs such that any d3 : (0,1) — (0,1) which satisfies the
infinite removal lemma for H satisfies 43y = 0(d). However, such examples
are rather unusual and the proof presented in Section 3.3 of the infinite
removal lemma implies that for many commonly studied families H of
graphs the bound on 6,;1 is only tower-type, improving the wowzer-type
bound from the original proof.

Our discussions of the graph removal lemma and the induced removal
lemma will occupy the bulk of this survey but we will also talk about
some further recent developments in the study of removal lemmas. These
include arithmetic removal lemmas (Section 4) and the recently developed
sparse removal lemmas which hold for subgraphs of sparse random and
pseudorandom graphs (Section 5). We will conclude with some further
comments on related topics.

2 The graph removal lemma

In this section we will discuss the two proofs of the removal lemma,
Theorem 1.1, at length. In Section 2.1, we will go through the regularity
lemma and the usual proof of the removal lemma. Then, in Section 2.2,
we will consider a simplified variant of the second author’s recent proof
[38], showing how it connects to the weak regularity lemma of Frieze and
Kannan [44, 45].

2.1 The standard proof

We begin with the proof of the regularity lemma and then deduce the
removal lemma. For vertex subsets S,T of a graph G, we let eg(S,T)
denote the number of pairs in S x T that are edges of G and dg(S,T) =

| SIITI ) denote the fraction of pairs in S x T that are edges of G. For
simplicity of notation, we drop the subscript if the graph G is clear from
context. Although non-standard, it will be convenient to define the edge
density of a graph G = (V, E) to be d(G) =d(V,V) = ZE(G , which is the
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fraction of all ordered pairs of (not necessarily distinct) vertices which are
edges. A pair (S,7T) of subsets is e-reqular if, for all subsets S’ C S and
T' C T with |S’| > ¢|S| and |T’| > &|T|, we have |[d(S',T") —d(S,T)| < e.
Informally, a pair of subsets is e-regular with a small ¢ if the edges between
S and T are uniformly distributed among large subsets.

Let G = (V, E) beagraph and P : V = VjU. ..UV} be a vertex partition
of G. The partition of P is equitable if each pair of parts differ in size by
at most 1. The partition P is e-regular if all but at most k2 pairs of parts
(V;,V;) are e-regular. Note that we are considering all k% ordered pairs
(Vi,V;), including those with i = j. We next state Szemerédi’s regularity
lemma [111].

Lemma 2.1 For every ¢ > 0, there is K = K(e) such that every graph
G = (V,E) has an equitable, £-reqular vertex partition into at most K
parts. Moreover, we may take K to be a tower of height O(c~®).

Let g : [0,1] — R be a convex function. For vertex subsets S,7° C V/
of a graph G, let q(S,T) = q(d(S,T))|S||T|/|V|?. For partitions S : § =
S$1U...USgand T : T'=T1U...UTy, let ¢(S,T) = 3" cica 1 << 9056, Tj).
For a vertex partition P : V = VjU...UV} of G, define the mean-q density
to be

g(P)=q(P,P)= Y q(Vi,Vi).
1<4,5<k

We next state some simple properties which follow from Jensen’s in-
equality using the convexity of g. A refinement of a partition P of a vertex
set V is another partition @) of V such that every part of @ is a subset of
a part of P.

Proposition 2.2 1. For partitions S and T of vertexr subsets S and
T, we have ¢(S,T) > q(S,T).

2. If Q is a refinement of P, then q(Q) > q(P).

3. If d =d(G) =d(V,V) is the edge density of G, then, for any vertex
partition P,
q(d) < q(P) < dq(1) + (1 — d)q(0).

The first and second part of Proposition 2.2 show that by refining a
vertex partition the mean-g density cannot decrease, while the last part
gives the range of possible values for ¢(P) if we only know the edge density
d of G.

The convex function g(z) = z? for x € [0,1] is chosen in the standard
proof of the graph regularity lemma and we will do the same for the rest



