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Preface

In the spring of 1996, the late Peter Carruthers proposed the initi-
ation of a new course in the Department of Physics at the University
of Arizona, entitled "Wavelets in Physics”. His draft course syllabus
contained the following assessment:

Wavelet analysis has become prominent of late, possess-
ing and surpassing the merits of Fourier analysis and frac-
tal thinking, being simultaneously useful in many fields and
pretty mathematically.

The topics to have been discussed in this course included applica-
tions of wavelets in various areas, such as pattern analysis, statistical
physics, field theory, computational physics and large scale structures
of the universe. We were invited by Peter to lecture on some of these
topics in his class. However, this proposal was never realized. Peter
met with a serious automobile accident in the fall of 1996, and passed
away August 3, 1997.

Peter Carruthers was our dear friend and an enthusiastic colleague.
It is not our intention to include here all of his contributions to physics
and non-physics issues, but to survey only one of his pursuits of physics:
he was a vigorous proponent of the applications of wavelet analysis in
theoretical physics. Since 1992 when discrete wavelet analysis, i.e. the
wavelet transformation via orthogonal and complete bases, was first
shown to be possible, Peter’s influence convinced several of his col-
leagues to enter and develop this new field. He had planned to write or
edit a book on wavelets in physics subsequent to the initial offering of
his course. Unfortunately, Peter was not afforded the time required to
complete this task. ,

It is now possible to provide for our physics colleagues and students
an introduction to the techniques and present status of wavelet applica-
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tions in physics, through a compilation of initial results in various ar-
eas. This is our motivation for editing this book. Much of the material
presented here-actually originated from our draft notes intended for lec-
tures in Peter’s proposed class. Therefore, it is fitting and appropriate
that we dedicate this work to the memory of our friend Peter Carruthers.

We are grateful to Mrs. Lucy Carruthers for providing Peter’s paint-
ing “’faculty meeting” for the cover of this book.

Li-Zhi Fang
Robert L. Thews
Tucson, August 21, 1998
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Peter Carruthers’ Notes on Wavelet Analysis

A. Wavelet Analysis of Music, Art and Poetry

The wonderful achievements in music, art and poetry have attracted
a great deal of scholarly attention but rarely in a unified form. Neither
have these analyses been quantitative. Yet for along time it has been
suspected that a strong similarity exists in the structure, and even of
creative process, among these subjects. Kandinsky stressed similari-
ties between art and music [1]; recently the Yale Poet John Hollander
published a book [2] which couples well known paintings with ana-
logues poems. Another, more controversial, effort on these lines is the
book by Robert Hofstadter with the provocative title Goedel, Escher
and Bach [3]. .

Recent developments in applied mathematics known as “wavelet
analysis” have attracted a wide following. Although there exist various
antecedents, the modern results originated in earthquake analysis and
were subsequently developed in the mathematics community.

In order to present the problem addressed by wavelets, consider
the common experience of listening to music. At each instant of time
our ear/brain system decomposes the signal according to its frequency
composition. However the famous Fourier analysis of the signal does
not allow the simultaneous determination of the conjugate variables
frequency and time. In contrast, the description of a signal by a su-
perposition of well-chosen wavelets provides an optimal mathematical
description.

A similar improvement occurs in image analysis, where massive
data compression is possible. Consider the representation of a photo.
It might take one thousand Fourier coefficients to get a good rendition
of a face, but about ten for wavelets. In addition the wavelets are quite
good at analyzing contrast.

Our first goal is to obtain the wavelet correlations for music, art and
poetry, and to look for common patterns. One can imagine pulling up
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the Mona Lisa on the web, and applying a two-dimensional wavelet
transform to it, comparing the results with those from a Bach sonata.
The case of poetry needs study due to the variety of rhythmic and tonal
elements that occur.

References

1. W. Kandinsky, 1994, in Complete Writing on Art, ed. K.C. Lind-
say and P. Vergo, (Da Capo Press, New, York.)

2. J. Hollander, 1995, The Gazer’s Spirit, (U. Chicago Press)

3. R. Hofstader, 1979, Goedel, Escher and Bach, (Basic Books, New
York.)



B. Moment and Wavelet Analysis of Correlations
in Multihadron and Galaxy Distribution

1 Introduction

Here we consider recent developments in the analysis of textures of
systems composed of many “points”. For clarity we focus on two im-
portant examples, for which experimental progress has been decisive.
The first is that of multihadron production [1], in which a large collec-
tion of final states in the momentum phase space can be prepared having
identical initial conditions. The second is that of galaxy distributions,
in which the points live in ordinary space-time. In this case there is
no ensemble since there is only one specimen, presumably created by
the big bang. Although the system is very large, it possesses correla-
tions of very long range, making the usual procedure of creating a fake
ensemble by partitioning the system into arbitrarily chosen subsystems
suspect as a method of deriving correlation functions.

For simplicity we consider systems composed of one species of par-
ticle. Typically one considers charged hadrons without regard to sign.
However recent experiments have found a strong and important effect
for like-sign charges for high resolution, which must be taken into ac-
count. In the case of galaxies we do not discriminate among the differ-
ent types, spiral, elliptic, etc. At the expense of writing more compli-
cated, it is possible to handle such details.

The classic approach to texture analysis is by means of correlation
functions [2]. Unfortunately they are hard to measure beyond second
order. However it is now possible to measure factorial moments of the
count distributions to fifth order and high resolution in the hadronic
case. These moments are found in principle by integrating the density
correlation functions p,(z;...z,) over some patch of phase space called
(). Defining a sequence of densities of which the first two are

(z,5) = Z(S(x — zi(s ey
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and performing suitable averages leads to

(n)a = fn pi(z)d’c A3)

(n(n—1))Q=/Qd3x/nd3x'p2(x,x’) (C))

Another formulation for densities in particle physics uses the se-
quence of inclusive differential cross sections. These formulations are
equivalent; for uniformity of presentation we shall use the delta func-
tion definition of densities.

The dependence of moments on the location, shape and size of 2
tells us much about the correlation function. Of particular interest has
been the search for domains (and appropriate variables) in which scal-
ing might occur. This development has been much influenced by the
emergence of fractal thinking in many fields.

By now there is a detailed technology on this topic. This allows the
model-independent description of data in a form of considerable utility.
We shall refer to earlier papers for technical details.

In the past decade a powerful variant of the Fourier transform —
“wavelet analysis” — has shown great promise for the analysis of tex-
tures and also great data compression capability. Unlike the Fourier
method, wavelets allow simultaneous localization in conjugate vari-
ables. For example, when listening to music we make somehow a fre-
quency analysis at each moment in time. The vast possibilities of this
approach have already led to new insights into many subjects, such as
signal analysis, pattern recognition, etc. In physical systems we expect
advances both in phenomenology and the reformulation of dynamical
problems. We briefly examine the behavior of correlations in simple
cascade models using the simplest wavelet, the Haar basis.



2 The situation for multihadron production

Ten years ago the field of multiparticle production was rejuvenated by
the suggestion of Bialas and Peschanski [3], to study the dependence of
“bin-averaged” factorial moments as a function of rapidity bin-width
dy. Recall that the rapidity y = (1/2) In[(E + p.)/(E — p.)] is additive
under change of inertial frames and is a natural variable for longitudinal
kinematics. When true momentum is not measured it is well approx-
imated by pseudorapidity » = —Intan#/2, with @ the angle of the
final particle with respect to the collision axis. From egs. (3) and (4)
and their generalization to higher order we write the factorial moment
F,(dy) as

F,(6y) = Z (ni(n; — 1)(nz()n, +p+1)) 5)

We have chosen the €2 to be M adjacent bins of width §y. Note that
for Poissonian count statistics the F), are unity. Typically one expects
dynamical correlations due to resonance decays and statistical corre-
lations among like sign particles, (such as 7~7~, etc) usually called
Bose-Einstein correlations.

In the case of the second moment we can measure p,(y,%y’) and
directly integrate eq.(4) to get F»(dy), as shown in Fig.1 of [4]. The
bending of the curve is best attributed to the existence of a correlation
length [4]. Much attention has been given to the possibility of scaling
for very small y. To the accuracy of the data there is no conclusive
evidence for scaling. However recent data show good scaling for like
sign pions which can dominate for small phase space cells (in this case
the best variable seems to be the invariant momentum transfer (Q?)
between particle pairs.)

The density correlations and the correspondmg moments inevitably
contain contributions of lower order. The systematic way to remove
these is by going over to cumulants C,, and the factorial camulant mo-
ments, as we have discussed elsewhere [5].

In summary we can mention some salient results



1. The moments F;, (or K},) typically increase with order p and with
collision energy. They also increase (that is fluctuations increase) with
shrinking bin size.

2. For complex targets (involving nuclei, typically) there are essen-
tially no true (cumulant) correlations beyond second order [6].

3. For most multiparticle production processes the p-th order cu-
mulant can be built from (symmetrized) linked products of two particle
cumulants

Ap

cumep7w5§:@@m@@3y@@—Lm (6)

with the C’s normalized to the single particle densities p;(1)...p1(p).

4. If A, is properly chosen [7] as (p — 1)! eq.(6) integrates to give
the factorial cumulant moments characteristic of the negative binomial
distribution (NBD), which provides a good description of charged par-
ticle counts in much of phase space. For later reference we write the
NBD distribution as

perm

pr_ (k=1 (@/k)"
" (k—=1)n! (14 a/k)n+k

(7

The parameter k£ can be any positive real number. It depends on the
reaction, on the energy, and the size of the phase space volume in which
the counting takes place. In terms of correlations, 1/k is given by the
integral of the two particle cumulant correlation C, over the domain 2.

Although a variety of dynamical models (typically cascade pro-
cesses) suggest the NBD, more work needs to be done. As in the case
of the Maxwell distribution for molecular velocities, the form of eq.(7)
seems to be independent of dynamical details, a situation that has both
good and bad features.

5. An interesting “statistic” is Py(€2), the probability of finding
nothing [8] in 2. This is usually called the “rapidity gap” probability.
In the case of galaxies it is the void probability, discussed in the next
section. In each case the data are well described by negative binomial
count statistics.
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6. Some important technical modifications of the bin-averaging ap-
proach have been developed by the Tucson group. To appreciate these,
first note that for the one-dimensional case F is given by the integral
over adjacent boxes [9] of side dy, centered on the diagonal y; = y, in
the y; — y2 plane. (For higher order one has hypercubes.) Two points
close by in this plane but not in the same bin do not contribute to the
moment. For highly clumped events the problem is serious because
the moments jump around when the bin size is reduced. As a conse-
quence these rare but important events give rise to spurious statistical
fluctuations in the domain of greatest interest.

The situation is much improved if the integration over boxes is re-
placed by a strip. Originally [4] the strip domain was used as a con-
venient approximation, but later we realized [5, 8] that the strip do-
main gives a general approach, close numerically to the box method
but without the spurious fluctuations mentioned above [10]. The strip
with width e now provides the resolution scale; all pairs of points closer
than e contribute to the strip moment on an equal footing [8,9]. This
approach is now widely used in multihadron data analysis. Note that
should scaling occur, the method is numerically close to that used to
define correlation dimensions, in which case all pairs are less than a
shrinking value €. In addition to the Grassberger-Hentschel-Procaccia
algorithm [11] one can define [10] a “star integral”, which has the addi-
tional merit of reducing computational needs, allowing the analysis of
events having very high multiplicity, as expected in the planned accel-
erators LHC and RHIC.

For details about these developments consult the references.

3 The situation for galaxy counts and correlations

Although we reviewed this topic fairly recently [8], new results and
techniques are constantly emerging in this popular field, often known
as “large scale structure”. The classic reference is the book by Peebles
[12]. The method of correlation functions is developed in detail, and a
conjecture about the structure of correlation known as the “hierarchical
model” is put forward. In fact it is basically the same as the “linked



