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PREFACE

Chirality is a phenomenon that is manifested throughout the natural world, ranging
from fundamental particles through the realm of molecules and biological organisms
to spiral galaxies. Thus, chirality is of interest to physicists, chemists, biologists, and
astronomers. Chiroptical spectroscopy utilizes the differential response of chiral objects
to circularly polarized electromagnetic radiation. Applications of chiroptical spectroscopy
are widespread in chemistry, biochemistry, biology, and physics. It is indispensable for
stereochemical elucidation of organic and inorganic molecules. Nearly all biomolecules
and natural products are chiral, as are the majority of drugs. This has led to crucial
applications of chiroptical spectroscopy ranging from the study of protein folding to
characterization of small molecules, pharmaceuticals, and nucleic acids.

The first chiroptical phenomenon to be observed was optical rotation (OR) and its
wavelength dependence, namely, optical rotatory dispersion (ORD), in the early nine-
teenth century. Circular dichroism associated with electronic transitions (ECD), currently
the most widely used chiroptical method, was discovered in the mid-nineteenth century,
and its relationship to ORD and absorption was elucidated at the end of the nineteenth
century. Circularly polarized luminescence (CPL) from chiral crystals was observed in
the 1940s. The introduction of commercial instrumentation for measuring ORD in the
1950s and ECD in the 1960s led to a rapid expansion of applications of these forms of
chiroptical spectroscopy to various branches of science, and especially to organic and
inorganic chemistry and to biochemistry.

Until the 1970s, chiroptical spectroscopy was confined to the study of electronic tran-
sitions, but vibrational transitions became accessible with the development of vibrational
circular dichroism (VCD) and Raman optical activity (ROA). Other major extensions of
chiroptical spectroscopy include differential ionization of chiral molecules by circularly
polarized light (photoelectron CD), measurement of optical activity in the X-ray region,
magnetochiral dichroism, and nonlinear forms of chiroptical spectroscopy.

The theory of chiroptical spectroscopy also goes back many years, but has recently
made spectacular advances. Classical theories of optical activity were formulated in
the early twentieth century, and the quantum mechanical theory of optical rotation was
described in 1929. Approximate formulations of the quantum mechanical models were
developed in the 1930s and more extensively with the growth of experimental ORD and
ECD studies, starting in the late 1950s. The quantum mechanical methods for calculations
of chiroptical spectroscopic properties reached a mature stage in the 1980s and 1990s.
Ab initio calculations of VCD, ECD, ORD, and ROA have proven highly successful and
are now widely used for small and medium-sized molecules.

Many books have been published on ORD, ECD, and VCD/ROA. The present
two volumes are the first comprehensive treatise covering the whole field of chirop-
tical spectroscopy. Volume 1 covers the instrumentation, methodologies, and theoretical
simulations for different chiroptical spectroscopic methods. In addition to an extensive
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treatment of ECD, VCD, and ROA, this volume includes chapters on ORD, CPL, pho-
toelectron CD, X-ray-detected CD, magnetochiral dichroism, and nonlinear chiroptical
spectroscopy. Chapters on the related techniques of linear dichroism, chiroptical imag-
ing of crystals and electro-optic absorption, which sometimes supplement chiroptical
interpretations, are also included. The coverage of theoretical methods is also extensive,
including simulation of ECD, ORD, VCD, and ROA spectra of molecules ranging from
small molecules to macromolecules. Volume 2 describes applications of ECD, VCD,
and ROA in the stereochemical analysis of organic and inorganic compounds and to
biomolecules such as natural products, proteins, and nucleic acids. The roles of chiroptical
methods in the study of drug mechanisms and drug discovery are described.

Thus, this work is unique in presenting an extensive coverage of the instrumenta-
tion and techniques of chiroptical spectroscopy, theoretical methods and simulation of
chiroptical spectra, and applications of chiroptical spectroscopy in inorganic and organic
chemistry, biochemistry, and drug discovery. In each of these areas, leading experts have
provided the background needed for beginners, such as undergraduates and graduate
students, and a state-of-the-art treatment for active researchers in academia and industry.

We are grateful to the contributors to these two volumes who kindly accepted our
invitations to contribute and who have met the challenges of presenting accessible, up-
to-date treatments of their assigned topics in a timely fashion.

NINA BEROVA

PRASAD L. POLAVARAPU
Koi1 NAKANISHI
ROBERT W. WooDY
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ON THE INTERACTION OF LIGHT WITH
MOLECULES: PATHWAYS TO THE
THEORETICAL INTERPRETATION OF
CHIROPTICAL PHENOMENA

Georges H. Wagniére

1.1. A BRIEF HISTORICAL RETROSPECTIVE

1.1.1. On the Nature of Light

The ancient Greek philosophers, such as Pythagoras and his disciples, later also Euclid,
gave early speculations on the nature of light. Yet the fundamental question, what light
really is, has been systematically approached only following the birth of modern astron-
omy in the fifteenth and sixteenth century. The developing manufacture of lenses and
of other optical components for technical purposes undoubtedly stimulated this scientific
endeavor.

The lasting foundations of a modern theory of light were, however, not laid before
the second half of the seventeenth century. While Isaac Newton (1642—1727), after
discovering the spectral resolution of white light, tended to consider it as made up of
particles, Christiaan Huygens (1629-1695) attributed to it a wave nature and thereby
succeeded in explaining reflection and refraction. Significant advances in the understand-
ing of light were accomplished in the nineteenth century. Augustin Fresnel (1788—-1827)
extended the theory of Huygens to explain diffraction, thereby affirming the apparent
superiority of the wave model. However, a satisfying deeper explanation of the nature
of the oscillating medium was still missing.

Not before the development of a theory of electricity and magnetism was a significant
next step made forward. Jean-Baptiste Biot (1774—1862) not only made important con-
tributions to the understanding of the relation between an electric current and a magnetic
field—the Biot—Savart law—but also discovered the rotation of the plane of linearly

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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polarized light in “optically active” liquids, such as sugar solutions. Michael Faraday
(1791-1867) discovered both (a) the electromagnetic law of induction and (b) the effect
named after him, namely, that a magnetic field could cause optical rotation in a material
medium. James Clerk Maxwell (1831-1879) subsequently succeeded in mathematically
unifying the laws of electricity and magnetism. From Maxwell’s equations (see Section
1.2.1) one may directly derive an electromagnetic wave equation that has proven to be
an excellent description of the properties of light and its propagation. Light then appears
as a transverse wave, with an electric and a magnetic field component perpendicular to
each other and to the direction of propagation.

Unexpectedly, and in spite of the success of the classical wave theory, the concept of
a particle nature of light, dormant for about two centuries, resurfaced at the beginning of
the twentieth century. In order to satisfactorily interpret the law of blackbody radiation,
Max Planck (1858—1947) was led to assume that an electromagnetic field inside a cavity,
and in thermal equilibrium with it, behaves as a collection of harmonic oscillators, the
energy of which is quantized. From the photoelectric effect, Albert Einstein (1879-1955)
concluded that radiation is absorbed by an atom in the form of quanta of energy pro-
portional to its frequency, E = hv, where the quantity 4 is Planck’s constant. Thus the
concept of the photon was born. The particle-wave duality, not only for light, but also
for matter, became a cornerstone of the quantum mechanics that then soon developed.

Assuming a formal analogy between the radiation oscillators and the quantum
mechanical harmonic oscillator, P. A. M. Dirac (1902—-1984) initiated an algebra of
photon states. The radiation field is consequently represented as a many-photon system,
each photon acting as a harmonic oscillator of given frequency. State changes of
the radiation field are then described by photon creation and annihilation operators.
However, even in this quantized frame, the electromagnetic picture derived from the
classical description is essentially maintained. Considering a classical ray of light, one
may, according to how the electric and magnetic field oscillate in space and time,
speak of linear, circular, or elliptic polarization. The concept of polarization may also
be attributed to a single photon. Beth’s experiment in 1936 revealed that circularly
polarized light carries angular momentum, and that this angular momentum corresponds
to a spin of the photon of £1h, depending on if the photon is left or right circularly
polarized.

In our aim to describe chiroptical phenomena of molecules, we ask ourselves to what
extent the quantization of the radiation field must be taken into account. Is it for our pur-
poses sufficient to describe the electromagnetic field classically, or is it also necessary to
explicitly consider this field quantization? A fact taught in elementary quantum mechan-
ics courses is that the quantum mechanical harmonic oscillator for increasing quantum
numbers behaves more and more like a classical oscillator. Similarly, the radiation field
at high quantum numbers, corresponding to a high photon density, behaves more and
more classically as the intensity grows.

One of Albert Einstein’s numerous seminal contributions to modern physics was to
recognize that absorption of light by matter obviously can only be electromagnetic field-
induced, but that there are two kinds of emission, spontaneous and induced. Spontaneous
emission occurs even in the absence of external radiation. It may be pictured as an
excitation of the vacuum state of the electromagnetic field by the atom or molecule.
Its detailed interpretation indeed requires field quantization. In absorption and induced
emission, on the other hand, one must assume a certain external light intensity to be
present, and therefore the classical description is admissible. This is indeed the point of
view that we shall adopt.
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The particular practical significance of induced emission only became apparent in
the middle of the last century and led to the development of masers and lasers. Some
of the chiroptical phenomena that we shall briefly consider in the following sections
indeed require the use of lasers. We shall treat these effects in the frame of the so-called
semiclassical radiation theory [1-6].

1.1.2. Quantum Chemistry in Its Early Stages

For the understanding of the atomic and molecular spectra, measured at higher and higher
resolution in the late nineteenth and early twentieth century, it became clear that only a
quantum mechanical description of matter would be satisfactory. This also initiated the
special field of quantum chemistry. Even the simplest molecule, that of hydrogen, already
poses some difficult problems, however. In the calculation of Heitler and London [7], a
solution of the Schrodinger equation for the electrons is sought, while a priori keeping
the nuclei fixed. A systematic investigation of the separability of electronic and nuclear
motion was worked out by Born and Oppenheimer [8]. They showed that due to the
mass difference between electrons and nuclei, the molecular Schrodinger equation may
be approximately separated into an equation for the electrons at different fixed nuclear
positions, and an equation for the vibrations of the nuclei in the potential energy surfaces
that are derived from the solutions of the electronic equation. Finally, there is the rotation
of the molecule as a whole to be considered, approximated by a three-dimensional rotator,
or top, of appropriate symmetry. Consequently, the overall molecular wavefunction may
then be represented as a product:

Winolec = cI)eleib@rgtr,

and the energy E can be expressed as a sum. A molecular change of state is correspond-
ingly written as

AEnolec = AEg + AEyjp + AE q,

with AE, usually on the order of 10*~10° cm™!, AEyp &~ 10°~10° cm™!, AE,y &~
107110 e,

It was soon recognized that the solution of the electronic equation alone already is
a formidable task, the main difficulty being the electron—electron interaction. A general
and rigorously justifiable procedure was then developed, consisting of several steps.
(a) Calculate a set of orthonormalized molecular one-electron functions—for instance,
molecular orbitals (MO) as linear combinations of atomic orbitals (LCAO)—by solving
a simplified electronic Schrodinger equation that neglects electron—electron interaction.
Multiply each MO with an appropriate spin function. Assign the electrons individually to
these spin orbitals, respecting the Pauli exclusion principle. (b) Such an assignment was
given the name configuration. An electron configuration is thus described as a product of
the occupied one-electron molecular spin orbitals. Because electrons are fermions, these
products must be antisymmetric with respect to the interchange of any two electrons.
Therefore, the many-electron functions are to be antisymmetrized and may be written
in the form of Slater determinants. Every Slater determinant thus represents an electron
configuration. The solution of the many-electron Schrodinger equation is performed on
the basis of these antisymmetrized configurational functions and is termed configuration
interaction (CI). The electronic wavefunctions finally so obtained consequently present
themselves as linear combinations of such Slater determinants.



