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PREFACE

This textbook contains, with some extensions, our lectures given at the
Department of General Mechanics of the International Centre for Mechanical
Sciences (CISM) in Udine/Italy during the month of October, 1973.

The book is divided into four major parts. The first part (Chapter 2, 3) is
concerned with the mathematical representation of vibration systems and the
corresponding general solution. The second part (Chapter 4) deals with the
boundedness and stability of vibration systems. Thus, information on the general
behavior of the system is obtained without any specified knowledge of the initial
conditions and forcing functions. The third part (Chapter 5, 6) is devoted to
deterministic excitation forces. In particular, the harmonic excitation leads to the
phenomena of resonance, pseudoresonance and absorption. The fourth part
(Chapter 7) considers stochastic excitation forces. The covariance analysis and the
spectral density analysis of random vibrations are presented. Throughout the book
examples are inserted for illustration.

In conclusion, we wish to express our gratitude to the International
Centre for Mechanical Sciences (CISM) and to Professor Sobrero who invited us to
deliver the lecture in Udine. We also acknowledge the support of Professor Magnus
from the Institute B of Mechanics at the Technical University Munich.

Munich, October 1973

Peter C. Miiller Werner O. Schiehlen
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CHAPTER 1

Introduction

The subject of vibration deals with the oscil=-
latory behavior of physical systems. The interaction of mass
and elasticity allows vibration as well as the interaction of in=-
duction and capacity. Most vehicles, machines and circuits ex-
perience vibration and their design generally requires consid-
eration of their oscillatory behavior.

Vibration systems can be characterized as
linear or non-linear, as time-invariant or time-variant, as
free or forced, as single-degree of freedom or multi-degree
of freedom. For linear systems the principle of superposition
holds, and the mathematical techniques available for their
treatment are well-developed in matrix and control theory.
In contrast, for the analysis of nonlinear systems the tech-
niques are only partially develoi)ed and they are based mainly
on approximation methods. For linear, time-invariant sys-
tems the concept of modal analysis is available featuring ei=-
genvalues and eigenvectors. In contrary, for the analysis of
linear, time-variant systems the fundamental matrix has to
be found by numerical integration. Free vibrations take place
when a system oscillates without external impressed forces.

The system under free vibration will oscillate at its natural



frequencies or eigenfrequencies. In contrast, forced vibrations
take place under the excitation of external forces, in particular,
impulse, periodic and stochastic forces. Single-degree of free=~
dom systems are characterized by a scalar differential equation
of second order. In contrary, multi-degree of freedom systems
are usually described by vector and matrix differential equations.
The number of degrees of freedom is equal to the minimum
number of generalized coordinates necessary to describe the
motion of the system. In addition to the notions presented above,
Magnus (1969) uses the notions self-excited and parameter-ex-
cited. Self-excited vibrations may occur in nonlinear time-in-
variant, free systems while parameter-excited vibrations are
typical for linear, periodic time-invariant free systems.

In this contribution, linear, time-invariant
forced vibrations of mechanical systems with multi-degrees of
freedom will be consid;e;red. Linear time=~invariant systems are
often obtained by the linearization of mechanical systems inthe
neighborhood of an equilibrium position. Forced systems result
in addition to free systems in many vital phenomena such as
resonance, pseudo-resonance, absorption and random vibra-
tions. Multi-degree of freedom systems are usually necessary
for an adequate representation of mechanical systems. Even if
a continuous elastic body has an infinite number of degrees of
freedom, in many cases, part of such bodies may be assum-

ed to be rigid and the system may be dynamically equivalent



to one with finite degrees of freedom.

A rigorous treatment is given to the bounded-
ness and stability of the system's vibration, to resonances in=-
cluding pseudo-resonance and absorption, and to the random
vibration analysis via the covariance and the spectral density
technique. The computer-minded matrix theory is applied and
approved numerical algorithms are mentioned to serve the spe=-
cial needs of multi-degree of freedom systems. But simple ex-

amples are also analytically treated to achieve a better under-

standing.



CHAPTER 2

Mathematical Representation of Mechanical Vibration Systems

The mathematical representation of a mechan-
ical system requires firstly an adequate model. Secondly, one
of the principles of dynamics has to be applied to the model
and, then, the equations of motion are obtained. Finally, the
equations of motion can be summarized to the state equation of

the vibration system.

2.1 Modeling of Vibration Systems

For the modeling of vibration systems four
approaches can be listed:
1. Multi-body approach,
2. Finite element approach,
3. Continuous system approach,
4. Hybrid approach.
For each engineering problem, the appropriate approach has
to be elected. Some examples may illustrate the proceeding.
The vibrations of an automobile suspension
can be properly modeled by a three-body system, I'ig. 2.1,
where the automobile body and the wheels and axles are con=-

sidered as rigid bodies connected by springs and dashpots.



Further, the elasticity of the tires is represented by springs

without damping.

The vibrations of a

L

spinning centrifuge with

respect to its flexible

suspension can be mod-

eled by a rotating rigid Fig.2.1. Three-body model of an automobile
suspension
body in the best manner,

Fig.2.2. The suspension is rep-

TWWAH—+—
resented by spring and dashpot. Z || Z
The bending vibra- I
tions of an automobile body have to &P Z
be modeled by bar, rectangular and |
triangular elements, Fig. 2.3. Each l 2
element is considered as a flexible _W%l‘t_'}

A\

A

body where stiffness, damping and

oy ? ping Fig.2.2. One-body model
mass are concentrated in the nodes of a centrifuge
connecting the elements.

The torsional vibrations

of a uniform bar are mod-~ ]

l\ (*

eled best by a continuous

system, [ig. 2.4. The in-

L. Fig.2.3. Finite element model of an automobile
finite small elements are body

furnished with mass and elasticity. .

However, sometimes the three fundamental
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approaches do not fit the engineering problem as well. As an

example the spinning flexible satellite

|
[
i | Infinite small  TAY be mentioned. Here,' the core body
| dlement  is surely a rigid body while the flexible
! appendages represent continuous bars.
W‘WLWW In such cases, the continuous system

Fig.2.4. Continuous system may be replaced by a large number of

del of a b
model of a bar elastically interconnected rigid bodies.

Then, the multi~body approach can be used again. Or a hybrid
approach, Fig. 2.5, is used combining the multi-body and the

continuous system approach;

|
i ‘ see Likins (1971).
|

In the next sections the

1

13 three fundamental approaches‘

Fig.2.5. Hybrid model oféspinning satellite will be reviewed in short and

with ekl appeniages the corresponding principles of

dynamics will be applied.

2.2 Multi-body Approach

Assume a discrete, mechanical system with
the following elements: rigid bodies with constraints, springs
dashpots and actuators, Fig. 2.6. Then, either Euler's equa-
tion together with Newton's equation or Lagrange's equation

may be applied. Both methods require the same kinematics.
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Constraint

Kinematics ﬁ/DE

ashpot
The position of the rigid Actuator
body K; is uniquely char-
acterized in space by a

Rigid body

body-fixed, orthogonal
frame. With respect to

the inertial frame X, ¥1.21»

Fig.2.6. Discrete mechanical system with

the body=-fixed frame X;, vigid bodies

Yi, Zi, with origin at the

center of mass C i. can be described by the 3x1 -position vec=-
tor ri and the 3X3-rotation matrix A;. If there is only one
free rigid body, then the position vector may be given by three

Cartesian coordinates
T :
ri:[rx ry rz] ? |-1 H] (2-1)

and the rotation matrix may be given by three Euler angles, re-
presenting three generalized coordinates,

[ cos® cosy -co0s 8 siny sin 6
cos ¢ simp co§¢ co-sw . ~%in b cosD .
A =| +sin¢sin® cosy -siné sin @ siny ,i=1.
(2.2)
sin¢ sm.w sin¢ cos‘w ' —
-cos ¢ sinB cosy +Ccos ¢ sinB siny |
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Obviously, the free rigid body has six degrees of freedom. How-
ever, if there is a system of p rigid bodies, possibly with some
holonomic constraints, then the position vector and the rotation
matrix of the body Ki may depend on all generalized coordi-

nates of (translational) position as well as of rotation

r = ri(y,t)1

A=Aily.t) i=1(1)p

(2.3)

where y is the f X1 -generalized position vector composed
of the generalized coordinates. For the system's number of
degrees of freedom it yields

(2.4) F < 6p.

The 3x1 =velocity vector Vv; and the 3x1 -angular velocity
vector @®; of the body K; with respect to the inertial frame

are obtained by differentiation of (2. 3)

Vi=3,y +Vv;, Vi =29r/dt,
(2.5) i=1(1)p
(03=3Riy+a)i, c_o;=aai/at,
where — -
A ki rxi
Y 9y 9y
ar; OFyi Al Aryi
(2.6) Fri= — = & == ... == |, i=101
dy Y, 9y, 0Yr (1)p
i i 1)
i 9y, 9y, BYfJ

is the 3 X F ~Jacobian matrix of translation and
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d axi iaA ..... ﬂ1
E).y1 ayZ aYF
da; dayi dayi dayi .
v, yi fayi .., 2y i =1(1)p (2.7)
R Ry 3y A Y4 P
;i dani daz
Y1 2y2 QYPJ

is the 3 x F =Jacobian matrix of rotation. The angular veloc-
ity @; and the rotational Jacobian matrix JFg; are obtained

from the corresponding skew-symmetric rotation tensors

2 _ 3 AT & _ A ar  i=1(Dp
t ot 1 7 3y dy; T j=1(1)f
where
0 -azi dyi Axi
a,=|az; 0 -ay for a; = | ayi (2.9)
—ayi axi 0 ali

and a; is a 3 X1 -vector. Thus, ~ characterizes the matrix
notation of the vector cross product.

Newton's and Euler's Equation

Newton's equation reads for each rigid body K; with respect to

the center of mass C; as
mv; =f; , i=101)p (2.10)
where m; is the scalar mass and f; isthe 3x1 -force vec-

tor including all forces acting on body K; . Euler's equation

reads for each body K; with respectto C; as
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(2.11) li(;);+(7)ili(0i-l.', i-1(1)p

where I, is the 3 X3 inertia tensor of body K; and l; is the
3 x 1 «torque vector including all torques acting on body K; .
The force fi and the torque |; dependv in forced vibration
systems on the generalized coordinates (spring forces), on the
generalized velocities (dasﬁpot forces), on the time (actuator
forces) and on the constraints

fi = foi(y,y,t)+f,

(2.12) _ i=1(1)p
L = lai(Y,Y»t)'* bei s

where f¢; , l¢; are due to the constraints.

Introducing (2.5) and (2.12) in (2.10),(2.11) it remains

mi3ny + mij"ni + miéi = fBi(y,i,t) + fCi ,

1i3ni§+liéni9+lié’i+(§:9+0=’i) Ii(3ai9+5i> -
(2.13) ;
= lBi(Y7Y1t)+lCi )

L i=1(1)p

The 6p scalar equations (2.13) can be summarized in matrix

notation

(2.14) M(y,t)j+g(y,y.t)+f =0

where M is a 6p X f -mass matrix, g is a 6px1 -vector func-

tion including Vi and @; and f¢ is the 6pXx1 -vector of the
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constraint forces and torques. Thus, one gets 6p equations for
the F generalized coordinates and 6p-Ff linear independent con-
straint forces. Usually, however, the constraint forces are not
required and for system order reduction they have, then, to be
eliminated. This can be done by the principle of virtual work

regarding (2.6), (2.7):

p

p
2 (fgi or; + lZiéai) = 6YT§1(3L fCi"'gItilCi) =0 (2.15)

i=1

or

3 f.=0 (2.16)

where 3 = [ '3;1 jlz _____ 3;’,_1 '-j;p ] is the global F x 6p -Jaco-

bian matrix. Then, premultiplying (2.14) by 3’T, it remains
M(y,t)y + g(y,y,t) =0 (2.17)

where M is the FXx F -symmetric mass matrix and g is a

Fx1 ~-vector function.

Lagrange's equation

Lagrange's equation reads for a system of p rigid bodies as

d T oT
at 3y + Dy q. (2.18)
where
p
T = 1? %(V{mivi +(0.!;liwi> (2. 19)
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is the scalar kinetic energy and
T T
(2.20) q=,21 <3Tifi+3Rili)
i=
is the generalized f Xx 1 -force vector.
As simple as Lagrange's equation is looking as difficult may be
the evaluation. This is obvious if (2.5) is introduced in (2.19)
1 o T T . . —_— -7 —_—
T = > E (y 31im Iy +2y3miV +Vim iV +
(2.21) ,
.« T rg'T . . = IR
+y 3 3y +2y31a; + @ I wi)-

However, after proceeding through the differenti‘ation of the ki-
netic energy (2.21), it finally follows from Lagrange's equation
(2.18) exactly the same equation of motion (2; 17) as obtained
via Newton's and Euler's equation. In recent days of digital and
electronic computers, therefore, Newton's and Euler's equation
seem to be more convenient since only matrix.Operations are
required. Further, Euler's and Newton's equation can be easi-
ly extended to moving reference frames (relative motion) as

shown by Schiehlen (1972) .

Linearization

Assume equilibrium position y =0 and small oscillations in
the neiéhborhood of the equilibrium position. Then, the second

and higher order terms in the generalized coordinates can.-be



