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Preface

This text is intended as a one semester introduction to algebraic topology
at the undergraduate and beginning graduate levels. Basically, it covers
simplicial homology theory, the fundamental group, covering spaces, the
higher homotopy groups and introductory singular homology theory.

The text follows a broad historical outline and uses the proofs of the
discoverers of the important theorems when this is consistent with the
elementary level of the course. This method of presentation is intended to
reduce the abstract nature of algebraic topology to a level that is palatable
for the beginning student and to provide motivation and cohesion that are
often lacking in abstact treatments. The text emphasizes the geometric
approach to algebraic topology and attempts to show the importance of
topological concepts by applying them to problems of geometry and
analysis.

The prerequisites for this course are calculus at the sophomore level, a
one semester introduction to the theory of groups, a one semester introduc-
tion to point-set topology and some familiarity with vector spaces. Outlines
of the prerequisite material can be found in the appendices at the end of
the text. It is suggested that the reader not spend time initially working on
the appendices, but rather that he read from the beginning of the text,
referring to the appendices as his memory needs refreshing. The text is
designed for use by college juniors of normal intelligence and does not
require “mathematical maturity” beyond the junior level.

The core of the course is the first four chapters—geometric complexes,
simplicial homology groups, simplicial mappings, and the fundamental
group. After completing Chapter 4, the reader may take the chapters in
any order that suits him. Those particularly interested in the homology
sequence and singular homology may choose, for example, to skip Chapter
5 (covering spaces) and Chapter 6 (the higher homotopy groups) tempor-
arily and proceed directly to Chapter 7. There is not so much material
here, however, that the instructor will have to pick and choose in order to
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Preface

cover something in every chapter. A normal class should complete the first
six chapters and get well into Chapter 7.

No one semester course can cover all areas of algebraic topology, and
many important areas have been omitted from this text or passed over with
only brief mention. There is a fairly extensive list of references that will
point the student to more advanced aspects of the subject. There are, in
addition, references of historical importance for those interested in tracing
concepts to their origins. Conventional square brackets are used in refer-
ring to the numbered items in the bibliography.

For internal reference, theorems and examples are numbered consecu-
tively within each chapter. For example, “Theorem IV.7” refers to Theo-
rem 7 of Chapter 4. In addition, important theorems are indicated by their
names in the mathematical literature, usually a descriptive name (e.g.,
Theorem 5.4, The Covering Homotopy Property) or the name of the
discoverer (e.g., Theorem 7.8, The Lefschetz Fixed Point Theorem.)

A few advanced theorems, the Freudenthal Suspension Theorem, the
Hopf Classification Theorem, and the Hurewicz [somorphism Theorem,
for example, are stated in the text without proof. Although the proofs of
these results are too advanced for this course, the statements themselves
and some of their applications are not. Students at the beginning level of
algebraic topology can appreciate the beauty and power of these theorems,
and seeing them without proof may stimulate the reader to pursue them at
a more advanced level in the literature. References to reasonably accessible
proofs are given in each case.

The notation used in this text is fairly standard, and a real attempt has
been made to keep it as simple as possible. A list of commonly used
symbols with definitions and page references follows the table of contents.
The end of each proof is indicated by a hollow square, [].

There are many exercises of varying degrees of difficulty. Only the most
extraordinary student could solve them all on first reading. Most of the
problems give standard practice in using the text material or complete
arguments outlined in the text. A few provide real extensions of the ideas
covered in the text and represent worthy projects for undergraduate
research and independent study beyond the scope of a normal course.

I make no claim of originality for the concepts, theorems, or proofs
presented in this text. I am indebted to Wayne Patty for introducing me to
algebraic topology and to the many authors and research mathematicians
whose work I have read and used.

I am deeply grateful to Stephen Puckette and Paul Halmos for their
help and encouragement during the preparation of this text. I am also
indebted to Mrs. Barbara Hart for her patience and careful work in typing
the manuscript.

FrReD H. CROOM
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Algebraic Topology: An Introduction
by W. S. Massey

(Graduate Texts in Mathematics, Vol. 56)

1977. xxi, 261p. 61 illus. cloth

Here is a lucid examination of algebraic topology, designed to introduce advanced
undergraduate or beginning graduate students to the subject as painlessly as
possible. Algebraic Topology: An Introduction is the first textbook to offer a
straight-forward treatment of “standard” topics such as 2-dimensional manifolds,
the fundamental group, and covering spaces. The author’s exposition of these
topics is stripped of unnecessary definitions and terminology and complemented by
a wealth of examples and exercises.

Algebraic Topology: An Introduction evolved from lectures given at Yale University
to graduate and undergraduate students over a period of several years. The author
has incorporated the questions, criticisms and suggestions of his students in
developing the text. The prerequisites for its study are minimal: some group theory,
such as that normally contained in an undergraduate algebra course on the
Jjunior-senior level, and a one-semester undergraduate course in general topology.

Lectures on Algebraic Topology

by A. Dold

(Grundlehren der mathematischen Wissenschaften, Vol. 200)
1972. xi, 377p. 10 illus. cloth

Lectures on Algebraic Topology presents a comprehensive examination of singular
homology and cohomology, with special emphasis on products and manifolds. The
book also contains chapters on chain complexes and homological algebra, applica-
tions of homology to the geometry of euclidean space, and CW-spaces.

Developed from a one-year course on algebraic topology, Lectures on Algebraic
Topology will serve admirably as a text for the same. Its appendix contains the
presentation of Kan- and Cech-extensions of functors as a vital tool in algebraic
topology. In addition, the book features a set of exercises designed to provide
practice in the concepts advanced in the main text, as well as to point out further
results and developments.

From the reviews:

“This is a thoroughly modern book on algebraic topology, well suited to serve as a
text for university courses, and highly to be recommended to any serious student of
modern algebraic topology.”

Publicationes Mathematicae
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Geometric Complexes and Polyhedra

1.1 Introduction

Topology is an abstraction of geometry; it deals with sets having a structure
which permits the definition of continuity for functions and a concept of
“‘closeness” of points and sets. This structure, called the ‘““topology” on the
set, was originally determined from the properties of open sets in Euclidean
spaces, particularly the Euclidean plane.

It is assumed in this text that the reader has some familiarity with basic
topology, including such concepts as open and closed sets, compactness,
connectedness, metrizability, continuity, and homeomorphism. All of these
are normally studied in what is called ““point-set topology”; an outline of the
prerequisite information is contained in Appendix 2.

Point-set topology was strongly influenced by the general theory of sets
developed by Georg Cantor around 1880, and it received its primary impetus
from the introduction of general metric spaces by Maurice Frechet in 1906
and the appearance of the book Grundziige der Mengenlehre by Felix Haus-
dorff in 1912.

Although the historical origins of algebraic topology were somewhat
different, algebraic topology and point-set topology share a common goal:
to determine the nature of topological spaces by means of properties which
are invariant under homeomorphisms. Algebraic topology describes the
structure of a topological space by associating with it an algebraic system,
usually a group or a sequence of groups. For a space X, the associated group
G(X) reflects the geometric structure of X, particularly the arrangement of
the ““holes” in the space. There is a natural interplay between continuous
maps f: X — Y from one space to another and algebraic homomorphisms
S[*: G(X) — G(Y) on their associated groups.



1 Geometric Complexes and Polyhedra

Consider, for example, the unit circle S* in the Euclidean plane. The circle
has one hole, and this is reflected in the fact that its associated group is
generated by one element. The space composed of two tangent circles (a
figure eight) has two holes, and its associated group requires two generating
elements.

The group associated with any space is a topological invariant of that
space; in other words, homeomorphic spaces have isomorphic groups. The
groups thus give a method of comparing spaces. In our example, the circle
and figure eight are not homeomorphic since their associated groups are not
isomorphic.

Ideally, one would like to say that any topological spaces sharing a
specified list of topological properties must be homeomorphic. Theorems of
this type are called classification theorems because they divide topological
spaces into classes of topologically equivalent members. This is the sort of
theorem to which topology aspires, thus far with limited success. The reader
should be warned that an isomorphism between groups does not, in general,
guarantee that the associated spaces are homeomorphic.

There are several methods by which groups can be associated with topo-
logical spaces, and we shall examine two of them, homology and homotopy,
in this course. The purpose is the same in each case: to let the algebraic
structure of the group reflect the topological and geometric structures of the
underlying space. Once the groups have been defined and their basic proper-
ties established, many beautiful geometric theorems can be proved by alge-
braic arguments. The power of algebraic topology is derived from its use of
algebraic machinery to solve problems in topology and geometry.

The systematic study of algebraic topology was initiated by the French
mathematician Henri Poincaré (1854-1912) in a series of papers! during the
years 1895-1901. Algebraic topology, or analysis situs, did not develop as a
branch of point-set topology. Poincaré’s original paper predated Frechet’s
introduction of general metric spaces by eleven years and Hausdorff’s classic
treatise on point-set topology, Grundziige der Mengenlehre, by seventeen
years. Moreover, the motivations behind the two subjects were different.
Point-set topology developed as a general, abstract theory to deal with
continuous functions in a wide variety of settings. Algebraic topology was
motivated by specific geometric problems involving paths, surfaces, and
geometry in Euclidean spaces. Unlike point-set topology, algebraic topology
was not an outgrowth of Cantor’s general theory of sets. Indeed, in an
address to the International Mathematical Congress of 1908, Poincaré
referred to point-set theory as a ‘““disease” from which future generations
would recover.

Poincaré shared with David Hilbert (1862-1943) the distinction of being
the leading mathematician of his time. As we shall see, Poincaré’s geometric

1 The papers were Analysis Situs, Complément a I’ Analysis Situs, Deuxiéme Complément,
and Cinguiéme Complément. The other papers in this sequence, the third and fourth com-
plements, deal with algebraic geometry.
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1.2 Examples

insight was nothing short of phenomenal. He made significant contributions
in differential equations (his original specialty), complex variables, algebra,
algebraic geometry, celestial mechanics, mathematical physics, astronomy,
and topology. He wrote thirty books and over five hundred papers on new
mathematics. The volume of Poincaré’s mathematical works is surpassed
only by that of Leonard Euler’s. In addition, Poincaré was a leading writer
on popular science and philosophy of mathematics.

In the remaining sections of this chapter we shall examine some of the
types of problems that led to the introduction of algebraic topology and
define polyhedra, the class of spaces to which homology groups will be
applied in Chapter 2.

1.2 Examples

The following are offered as examples of the types of problems that led to
the development of algebraic topology by Poincaré. They are hard problems,
but the reader who has not studied them before has no cause for alarm. We
will use them only to illustrate the mathematical climate of the 1890’s and to
motivate Poincaré’s fundamental ideas.

1.2.1 The Jordan Curve Theorem and Related Problems

The French mathematician Camille Jordan (1858-1922) was first to point out
that the following ‘‘intuitively obvious” fact required proof, and the
resulting theorem has been named for him.

Jordan Curve Theorem. A simple closed curve C (i.e., a homeomorphic image
of a circle) in the Euclidean plane separates the plane into two open connected
sets with C as their common boundary. Exactly one of these open connected
sets (the ““inner region”) is bounded.

Jordan proposed this problem in 1892, but it was not solved by him. That
distinction belongs to Oswald Veblen (1880-1960), one of the guiding forces
in the development of algebraic topology, who published the first correct
solution in 1905 [55].

Lest the reader be misguided by his intuition, we present the following
related conjecture which was also of interest at the turn of the century.

Conjecture. Suppose D is a subset of the Euclidean plane R? and is the boundary
of each component of its complement R?\D. If R®\D has a bounded com-
ponent, then D is a simple closed curve.

This conjecture was proved false by L. E. J. Brouwer (1881-1966) at about
the same time that Veblen gave the first correct proof of the Jordan Curve
Theorem. The following counterexample is due to the Japanese geometer
Yoneyama (1917) and is known as the Lakes of Wada.



1 Geometric Complexes and Polyhedra

Figure 1.1

Consider the double annulus in Figure 1.1 as an island with two lakes
having water of distinct colors surrounded by the ocean. By constructing
canals from the ocean and the lakes into the island, we shall define three
connected open sets. First, canals are constructed bringing water from the
sea and from each lake to within distance d = 1 of each dry point of the
island. This process is repeated for d = 4,1, ..., (3)" ..., with no intersec-
tion of canals. The two lakes with their canal systems and the ocean with its
canal form three regions in the plane with the remaining “dry land” D as
common boundary. Since D separates the plane into three connected open
sets instead of two, the Jordan Curve Theorem shows that D is not a simple
closed curve.

1.2.2 Integration on Surfaces and Multiply-connected Domains
Consider the annulus in Figure 1.2 enclosed between the two circles H and K.

Figure 1.2

We are interested in evaluating curve integrals
j pdx + gdy
C
where p = p(x, y) and ¢ = ¢(x, y) are continuous functions of two variables
whose partial derivatives are continuous and satisfy the relation

&P
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1.2 Examples

Since ‘urve C; can be continuously deformed to a point in the annulus, then
pdx +qdy = 0.
Cy

Thus C; is considered to be negligible as far as curve integrals are concerned,
and we say that C; is “equivalent” to a constant path.

Figure 1.3

Green’s Theorem insures that the integrals over curves C, and C; of
Figure 1.3 are equal, so we can consider C, and C; to be “equivalent.”

How can we give a more precise meaning to this idea of equivalence of
paths ? There are several possible ways, and two of them form the basic ideas
of algebraic topology. First, we might consider C, and C; equivalent because
each can be transformed continuously into the other within the annulus.
This is the basic idea of homotopy theory, and we would say that C; and Cs
are homotopic paths. Curve C, is homotopic to a trivial (or constant) path
since it can be shrunk to a point. Note that C, and C, are not homotopic
paths since C, cannot be pulled across the “hole” that it encloses. For the
same reason, C; is not homotopic to Cs.

Another approach is to say that C, and C; are equivalent because they
form the boundary of a region enclosed in the annulus. This second idea is the
basis of homology theory, and C, and C; would be called homologous paths.
Curve C, is homologous to zero since it is the entire boundary of a region
enclosed in the annulus. Note that C, is not homologous to either C, or Cj.

The ideas of homology and homotopy were introduced by Poincaré in his
original paper Analysis Situs [49] in 1895. We shall consider both topics in
some detail as the course progresses.

1.2.3 Classification of Surfaces and Polyhedra

Consider the problem of explaining the difference between a sphere S2 and a
torus T as shown in Figure 1.4. The difference, of course, is apparent: the
sphere has one hole, and the torus has two. Moreover, the hole in the sphere
is somehow different from those in the torus. The problem is to explain this
difference in a mathematically rigorous way which can be applied to more
complicated and less intuitive examples.



