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Abstract

The structure space S(M) of a closed topological m-manifold M classifies bun-
dles whose fibers are closed m-manifolds equipped with a homotopy equivalence to
M. We construct a highly connected map from S(M) to a concoction of algebraic
L-theory and algebraic K-theory spaces associated with M. The construction re-
fines the well-known surgery theoretic analysis of the block structure space of M
in terms of L-theory.
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CHAPTER 1

Introduction

The structure space S(M) of a closed topological m-manifold M is the clas-
sifying space for bundles £ — X with an arbitrary C'W-space X as base, closed
topological manifolds as fibers and with a fiber homotopy trivialization

E—MxX

(a homotopy equivalence and a map over X ). The points of S(M) can loosely be
imagined as pairs (N, f) where N is a closed m-manifold and f: N — M is a homo-
topy equivalence. To explain the relationship between S(M) and automorphisms
of M, we invoke Hom(M), the topological group of homeomorphisms from M to
M, and G(M), the grouplike topological monoid of homotopy equivalences from
M to M. In practice we work with simplicial models of Hom(M) and G(M ). The
homotopy fiber of the inclusion BHom(M) — BG(M) is homotopy equivalent to
a union of connected components of S(M).

The main result of this paper is a calculation of the homotopy type of S(M)
in the so-called concordance stable range, in terms of L- and algebraic K-theory.
With m fixed as above, we construct a homotopy invariant functor

(Y, €) = LAyy (Y, €,m)

from spaces Y with spherical fibrations £ to spectra. The spectrum LA 4o, (Y, €, m)
is a concoction of the L-theory and the algebraic K-theory of spaces [27] associated
with Y, compounded with an assembly construction [21]. (The subscript ¢ is for
homotopy fibers of assembly maps.) In the case where Y = M (nonempty and
connected for simplicity) and £ is v, the normal fibration of M, there is a “local
degree” map

QT LA (M, v,m) — 8Z C Z.

There is then a highly connected map

local deg. SZ]

(1.1) S(M) — fiber[ Q=T LA 4o, (M, v, m)
where fiber in this case means the fiber over 0 € 87Z, an infinite loop space. The
connectivity estimate is given by the concordance stable range. In practice that
translates into m/3 approximately, but in theory it is more convoluted and the
reader is referred to definition 11.5. The result has a generalization to the case
in which M is compact with nonempty boundary. It looks formally the same.
Points of S(M) can be imagined as pairs (N, f) where N is a compact manifold
with boundary and f:(N,0N) — (M,0M) is a homotopy equivalence of pairs
restricting to a homeomorphism of N with dM.

We now give a slightly more detailed, although still sketchy, definition of the
spectrum QLA o (Y. €.m). (Details can be found in chapter 9.) It is the total

1
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homotopy fiber of a commutative square

QMLA(Y,€) —— S' AA%(Y, €, m)nz)2

(1.2) l l

QmLy(Y,§) —— S'AAY.&,m)pzye

The left-hand column is the quadratic L-theory assembly map. (This has a variety
of equivalent descriptions and in the simplest of these it depends only on Y and
the orientation double covering we¢ of ¥ determined by £. We do not insist on such
a simple description because that would make the horizontal maps in the diagram
more obscure; therefore Lo(Y, ) rather than L,(Y, wg) is the notation which we
prefer.) The right-hand column is the Waldhausen A-theory assembly map with
S'A and homotopy orbit construction inflicted. Both columns use a category of
(finitely dominated) retractive spaces or spectra over Y, subject to finiteness con-
ditions and equipped with a notion of Spanier-Whitehead duality which depends on
& and m. The horizontal maps are variants of a natural transformation = which was
defined in [37]; the precise relationship will be clarified in a moment. By opting for
finitely dominated retractive spaces in both columns we have implicitly selected the
decoration p. (The infinite loop space Q™LA 4o (Y, &, m) is decoration indepen-
dent, i.e., any consistent choice of decoration from the list h,p, ..., (=), w.ey (—00)
gives the same result up to a homotopy equivalence.)

This is a definition which relates Q™LA ¢ (Y, &, m) to known and trusted con-
cepts in algebraic L- and K-theory. For our constructions we prefer another defi-
nition of Q™LA . (Y,&,m) as the homotopy fiber of the map between homotopy
pullbacks of the rows in the commutative diagram

Q"’VL'%(Y.O = 5 A%(Y.g.,m)thz/z : incl. A%(Y, €, m)hg/z

o 1 1

QMVL*(Y,€) = A(Y, €, m)the/2 i . A(Y, €, m)h2/?

where the left-hand column is the assembly map in a form of wvisible symmetric
L-theory. The visible symmetric L-theory will be reviewed in chapter 3. There are
forgetful natural transformations

L.(Y,§) — VL*(Y,¢)
which fit into a homotopy cartesian square
L¥(Y.§) —— VLA(Y.¢)
L.(L §) — VL'({"{)-
This will also be reviewed in chapter 3. Together with the norm fibration sequence’
SUAA(Y,E m)zse ——— A(Y,E,m)HE2 I A(Y, €, m)h2

(and a variant with A% instead of A), this explains why the two competing def-
initions of LA, (Y.&, m), relying on diagrams (1.2) and (1.3) respectively, are
consistent.
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Our reasons for preferring the second definition of LA, are strategic. Qua-
dratic L-theory famously serves as a receptacle for relative invariants, such as
surgery obstructions of degree one normal maps X — Y. By contrast, visible
symmetric L-theory is a mild refinement of symmetric L-theory and as such a
good receptacle for absolute invariants: generalized signatures of Poincaré duality
spaces, say. In particular a Poincaré duality space Y of formal dimension m, and
with Spivak normal fibration &, determines a characteristic element

v (Y) € QHMVLE(Y, £)

which can be viewed as a refined signature. (We think of it as a point in an infinite
loop space. not a connected component of an infinite loop space.) Refining this
some more to pick up algebraic K-theory information, we get

(1.4) a(Y) € Q®°T"VLA*(Y.&,m)
where

A(Y, &, m)h2/?
(O™VLA®(Y, £,m) = holim lmcmsaon
QmVL'(Y. E) _~:—_> A(Y &m)IhZ/Z

This refinement expresses a compatibility between vz (Y) and the self-dual Euler
characteristic
vk (Y) € QF(A(Y, €, m)"/?)

We construct o(Y") in chapter 9. The construction enjoys continuity properties. It
can be applied to the fibers of a fibration £ — B whose fibers are Poincaré duality
spaces Ej of formal dimension m, so that we obtain a section of a fibration on B
whose fibers are certain infinite loop spaces.

Now suppose that the Poincaré duality space Y is a closed manifold of dimen-
sion . Then the point o(Y") lifts across the visible L-theory and A-theory assembly
maps to a point

(1.5) oY) € QTVLA(Y,€,m) .

We construct o7 (Y) in chapter 10. Again this construction enjoys continuity prop-
erties: it can be applied it to the fibers of a fibre bundle F —. B whose fibers are
closed manifolds Ej of dimension m. so that we obtain a section of a fibration on
B whose fibers are certain infinite loop spaces. (This is very hard to establish, like
the continuity property of excisive Euler characteristics in [10]. Relying on [16],
we reduce to the case of fiber bundles with discrete structure group.)

In particular, the space S(M) carries a universal bundle E — S(M) of closed
manifolds with a fiber homotopy trivialization E ~ S(M) x M. Therefore each
point (N, f) € S(M) determines an element f,oc”(N) € Q=" VLA®*% (M, vpr, m),
whose image in Q>*T™VLA®*(M, vy, m) under assembly comes with a preferred
path to o(M) € QT VLA®*(M, vy, m). This gives us the map (1.1): here it
comes as a map from S(M) to the homotopy fiber, over the point o(M), of the
assembly map

Q°FYLA*% (M, vag, m) — Q™ VLA®(M, vpr,m) .
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Similar ideas, i.e., a firework of characteristics and signatures, can be used to show
that the map (1.1) is highly connected; we give an overview in chapter 2 before
developing the details.

This result has many precursors. The most fundamental and best known of
these belong to surgery theory. From the surgery point of view it is very natural
to introduce certain “block” structure spaces such as

S (M), SMM).

These are designed in such a way that 7oS®(M) and woS" (M ) are identifiable with,
respectively, the subset of moS(M) determined by the simple homotopy equiva-
lences, and the quotient set of mpS(M) determined by the h-cobordism relation. In
addition they have the property

TS (M) = mo8°(M x DY), m8"(M) 2 18" (M x D).

This is obviously very useful in calculations. The surgery-theoretic calculations of
these spaces are of the form

S3(M) ~ fiber [Q=+"Lsg (M, w) — 8Z],

1.6 .
(1.6) S"(M) ~ fiber [Q°F™LAy (M, w) — 8Z],

where Ly and Lly are homotopy invariant functors from spaces with double
coverings to spectra. (In particular w denotes the orientation covering of M.) The
functors L, and Ly can be defined entirely in terms of algebraic L-theory, again
compounded with assembly. They are therefore fully 4-periodic:

QLS (X, v) ~ Lig(X,v) , QL (X, v) = Lig (X, v).

This calculation of S*(M) and 8" (M) is sometimes called the Casson-Sullivan-Wall-
Quinn-Ranicki theorem. An earlier version of it, describing the homotopy groups
of the block structure space(s), is known as the Casson-Sullivan-Wall long exact
sequence. The space level formulation was championed by Quinn. The complete
and final reduction to L-theory, at the space level, is mainly due to the untiring
efforts of Ranicki. This took many years.

Our calculation of structure spaces S(M) in the concordance stable range is
in agreement with the surgery theoretic calculation of block structure spaces. For
example, there is a commutative diagram

S§5(M) ———  fiber[Q®T"LAq(M,v,m) — Wh(m M) x 8Z)]

liucl. lforget.ful

S5(M) = fiber[Q°°T™L o (M, w) —s 8.

where the upper horizontal arrow is the restriction of the map (1.1). Passing to
vertical homotopy fibers, we obtain a highly connected map

TOP(M)/TOP(M) — Q° (Ao (M, v,m)pz2) -

a
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This is reminiscent of a highly connected map
TOP(M)/TOP(M) — Q°(H* (M )sz/2)

constructed in [36]; see also [41] for notation. These two maps are intended to be
the same, modulo Waldhausen's identification of the h-cobordism spectrum H® (M)
with A%y (M ). We do not guite prove that here, but we come close to it. It will be
the theme of another paper in this series.

Meanwhile Burghelea and Lashof [6, cor. D] obtained results on the homotopy
type of S(M). Localizing at odd primes, they were able to construct a highly
connected map

QS(M) — QS(M) x 0+ Ag (M. v, m)"/? .

(The localization is applied to S(M), Si (M) and Ay (M, v, m) before other opera-
tions are carried out: (2 in both sides, 2°°*! and the homotopy fixed point operation
in the right-hand side.) After localization of Ay, (M, v, m) at odd primes, the homo-
topy fixed point spectrum A (M, v, m)"%#/? is a wedge summand of Ay (M) which
depends only on v and the parity of m.

With hindsight, the Burghelea-Lashof result can be explained in terms of our
calculation of S(M) described above and the surgery-theoretic calculation of the
block structure space. At odd primes, the six-term diagram (1.3) simplifies be-
cause the Tate constructions in the middle column (again to be applied after the
localization of Ay (Y, &, m)) vanish. Therefore at odd primes

Q™LA (Y. €.m) =~ Q"Lay (Y. €) V Ag (Y, €, m)"%/?

This paper is a continuation of [36] and [37]. In another sense it is a continu-
ation of [10]. For technical support, we use a fair amount of controlled topology as
in (3], the Thurston-Mather-McDuff-Segal discrete approximation theory [16] for
homeomorphism groups as in [10], and Spanier-Whitehead duality theory with its
implications for algebraic K-theory as in [39].






CHAPTER 2

Outline of proof

In the introduction, we gave a rough description of certain invariants of type
signature and Euler characteristic for manifolds and Poincaré duality spaces. This
led us to a map of the form (1.1). We wish to show that the map is highly connected.
The main tools in the proof are

(i) a controlled version of the Casson-Sullivan-Wall-Quinn-Ranicki (CSWQR)
theorem in surgery theory;
(ii) more invariants of type signature and Euler characteristic for manifolds
and Poincaré duality spaces in a controlled setting;
(iii) a simple downward induction, where the induction beginning relies on (i)
while (ii) enables us to do the induction steps.
Let S(M xR ; ¢) be the controlled structure space of M x R?; here we view M x R!
as an open dense subset of the join M * S*~!. An element of S(M x R?; ¢) should
be thought of as a pair (IV, f) where N is a manifold of dimension m + ¢, without
boundary, and f: N — M x R? is a controlled homotopy equivalence [3]. There is
also a controlled block structure space

S(M x R; ¢)
where the decoration ¢s (controlled simple) indicates that we allow only structures
with vanishing controlled Whitehead torsion.

The homotopy type of g"“’(M x R; ¢) can be described by a formula which
combines the CSWQR ideas with controlled algebra [3]: namely,

(2.1)  S®(M xR';¢) =~ fiber [QT™HLy (M x R, v; ¢) — 8Z]

where LS* (M x RY, v; ¢) is the controlled quadratic L-theory (with vanishing con-
trolled Whitehead torsion) of the control space (M * S*=!, M x R?). Taking i to
the limit we have

colim 8(M x R'; ¢) ~ fiber [ colim Q®TM LS, (M x R',v; ¢) — 8Z

i>0 i>0

where the colimits are formed using product with R in various shapes. Moreover,
it is well-known [36] that the inclusions

colim S(M x R"; ¢) «— colim S**(M x R*; ¢) — colim ECS(M x R*; ¢)
i>0 i>0 i>0

are homotopy equivalences. Therefore we have
(2.2)

colim S(M x R'; ¢) =~ fiber | colim QT Ly (M x R',v; ¢) — 8Z

i>0 i>0
and this is the starting point for our downward induction.

7



8 2. OUTLINE OF PROOF

Next we discuss the induction steps. Let (Y,Y) be a control space. For the
present purposes we can take this to mean that Y is compact metrizable, and Y
is open dense in Y. A choice of spherical fibration £ on Y and integer m makes
the Waldhausen category of locally finitely dominated retractive spaces over Y into
a Waldhausen category with duality (see [10] for details). By forming L-theory.
K-theory etc., we define spectrum-valued functors

L.(Y,§; o),
VL*(Y.&; o),
(V,Y.) = A(Y; o)
LA.(Y, &, m; ¢),
VLA*(Y.&,m; ¢)

much as before. (Three of these can be viewed as functors of a general Waldhausen
category with duality; the ones having a V in their name use more special features.)
The symbol ¢ is a shorthand for control conditions, allowing us to avoid direct
reference to the inclusion Y — Y. There are natural assembly transformations

L%(Y,£; ¢) — Lo (Y. € ¢,
VL*%(Y,&: ¢) — VL (Y, € ¢),
(2.3) A?(Y;c) — A(Y; e),
LA, (Y, &,m: ¢) — LAL(Y,&,m; ¢),
VLA*%(Y,&,m: ¢) — VLA*(Y,&,m; ¢),

where the domain is now designed so that its homotopy groups are the locally finite
generalized homology groups of Y with (twisted where appropriate) coefficients in
Lo(%,&), VL*% (%, €), A(x), LAy(x,& m) and VLA®*% (%, &,m). Here « should be
thought of as a variable point in Y, and we restrict £ from Y to that point where
necessary. The homotopy fibers of the assembly maps (2.3) are denoted by

Loy (Y. & ¢)
~ VL*%(Y,¢; o),
(2.4) Ay (Y o),
LAy (Y.&,m; ¢)
~ VLA®y (Y. &, m; c),

respectively. (The homotopy equivalences asserted here are nontrivial; they are
established in chapter 6.) If (Y,Y) happens to be a controlled Poincaré duality
space of formal dimension m and with Spivak normal fibration £, then there is a
signature invariant

(2.5) oY) € Q®T™VLA® (Y, &, m; ¢)

which generalizes (1.4). This invariant has the expected naturality and continuity
properties. It is constructed in chapter 9.

If Y happens to be a manifold of dimension m and & = v is its normal bundle,
then (YY) is automatically a controlled Poincaré duality space of formal dimension
m and the signature invariant o(Y") lifts across the assembly map (2.3) to an element -

(2.6) o (Y) € QXTMVLA%(Y, €, m),

generalizing (1.5). This lift is constructed in chapter 10. In particular, the space -
S(M x R*; ¢) carries a universal bundle where each fiber is an (m 4+ i)-manifold
N together with a controlled homotopy equivalence f: N — M x R'. We may
compactify each fiber N to a control space N = N U S*"! in such a way that N

-
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is open dense in N and [ extends to a map from N to M % S~ Therefore each
point (N, f) € S(M x R*; ¢) determines an element

fooB(N) € Q<M HVLA* (M x R, v,m +i; ¢)

whose image in Q®T"HVLA®*(M x R',v,m + i; ¢) under assembly (2.3) comes
with a preferred path to o(M x R?). If this construction were to enjoy certain
continuity properties, it would give us a map

S(M x R;¢) o> QXFTMHLA Jo (M x R, v,m 41 ¢)

generalizing (1.1), where we think of the target as the homotopy fiber over the point
(M x R") of the appropriate assembly map in controlled VLA® theory of M x R,
Unfortunately we could not avoid some sacrifices in establishing the continuity
properties, and so we only get a map

(2.7) SUM xR ¢) —s QFFMHLA Lo (M xR, v,m+i; c)

where S (M x R'; ¢) € S(M x R"; ¢) is the union of the connected components
of S(M x R*; ¢) which are reducible in the sense that they come from myS(M).
Combining the maps (2.7) for all i > 0 results in a commutative ladder

| |

S'(M x R ¢) ——= Qo HHILA o (M x R yym+i+1;¢)

T !

S(M x R ; ¢) ———= QXFHLA J (M x R, v,m + 45 €)
(2:8) t !

| |

S (M xR; ¢) —— Q®FmHLA .o (M x RY, v.m +1; ¢

T T

S(M) QML A g (M, v, m)

where the vertical arrows are given by product with idp in the left-hand column,
and product with 0% (R) in the right-hand column. Each vertical arrow in the left-
hand column induces a surjection on 7. At the bottom of the ladder we recognize
the map (1.1) and at the top we recognize with a small effort (see chapter 13)
the map of (2.2). In particular, all homotopy fibers of the horizontal map at the
top of the ladder are either contractible or empty. We use downward induction to
establish a similar property for all horizontal maps in the ladder:

(f) for each of these maps, all homotopy fibers are highly connected or empty.
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It is enough show that in each square

SYM x RH; ) ——= Qeetm+EHLA o (M x R ym+i+1;¢)

(2.9) | T

S (M x R ; ¢) ———— QT HLA o (M x R, v,m +1i; ¢)

of the ladder, all total homotopy fibers are highly connected or empty.

Each wvertical homotopy fiber in the left-hand column can be identified with a
union of connected components of a controlled h-cobordism space H(N x R'; ¢),
where NN is some closed rm-manifold homotopy equivalent to M. By an easy calcula-
tion carried out mainly in chapter 7, the vertical homotopy fibers in the right-hand
column have the form

Q®Aq (M xR ¢) ~ QFAgy(N xR ;c).

With these descriptions, the map between matching vertical homotopy fibers in (2.9)
extends to a controlled form

(2.10) H(N x RY; ¢) — QC Ay (N x R'; ¢)

of Waldhausen's map relating h-cobordism spaces to A-theory. This is verified in
chapter 13. The map (2.10) is highly connected. So all its homotopy fibers are
highly connected, and so our claim regarding (2.9) is proved, and claim (7) is also
established. In particular, any homotopy fiber of our map

S(M) — Q¥°TMLA .o, (M, v, m)

is highly connected of empty. It only remains to show that the nonempty homotopy
fibers correspond to elements of QT LA 4o, (M, v, m) whose connected component
is in the kernel of the local degree homomorphism to 8Z.

For this we use the commutative diagram

moS(M) —— 7, LA, (M, v, m) — 87

induced by incl‘i forgetl :J

ToSM (M) —— My Ligg (M, v) —— 8Z

where the lower row is short exact. The left-hand vertical arrow is onto by defi-
nition. Its fibers are the orbits of an action of Wh(m; M) on mS(M). By direct
calculation, and almost by construction, the middle vertical arrow (which is a group
homomorphism) is also onto and its kernel is the image of a homomorphism

(2.11) mo (Ao (M, v, m))pz/2) — TmLAey (M, v,m).

Here mo((A"g (M, v,m))pz/2) is a quotient of Wh(mM). Hence we need to show
that the action of the Whitehead group in the upper left-hand term corresponds
in the upper middle term to a translation action, using the homomorphism (2.11).
This is done in chapter 13.



