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Preface
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Mathematics of Rutgers University, and entirely at the Department of Mathematics
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Bartsch done while the author as an Alexander von Humboldt fellow visited Giessen
University. It presents some results concerning methods in critical point theory
oriented towards differential equations which are variational in nature with strongly
indefinite Lagrangian functionals. The author thanks greatly T. Bartsch for his
kindnesses to him. He would like also to thank H. Brézis for his encouragements
and F. H. Lin, Y. Y. Li for the discussions on mathematics of common interest.
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suggestions on the content. Finally he thanks the University of Franche-Comté for
its optional support.

Yanheng Ding



Preface
1. Introduction
2. Lipschitz partitions of unity
3. Deformations on locally convex topological vector spaces
4. Critical point theorems
5. Homoclinics in Hamiltonian systems
5.1 Existence and multiplicity results for periodic Hamiltonians . . . .
5.2  Spectrum of the Hamiltonian operator . . . . . .. .. .. ...
5.3 Variational setting . . . . ... ... ... ... ... ... ...
5.4 Linkingstrucbure = = « w oo 5 ¢ 5 5 5 5 3 5 2 0w w8 mow e
55 The (C)sequences . . . . . . . . . v i v v v oo i n o
5.6 Proofs of the mainresults . . . . .. ... ... .........
5.7 Non periodic Hamiltonians . . . . . ... ... .........
5.7.1 Variational setting . . « : « « & ¢ s v o v e woa w0
5.7.2  Linking structure . . . ... ... ... .. .......
573 The{C)condition : : : : : : « ccvomsmmamns s
5.7.4 Proof of Theorem 5.3 . . . . ... ... . ... .....
6. Standing waves of nonlinear Schrodinger equations

6.1
6.2
6.3
6.4
6.5
6.6

Contents

Introduction and results . . . . . ... .. ... ... ... ...
Preliminaries . .. . . . . « 4 o o s s s @ @@ & o o o 5 s & & &
The linking structure . . . . . . . . . . oo
The (C) seqUences . . . . . . . . .. v v v i v i
Proofs of the existence and multiplicity . . . . .. ... . ...
Semiclassical states of a system of Schodinger equations . . . .

vii

15

25

35

35
39
41
42
45
53
54
56
60
62
65



viii Variational Methods for Strongly Indefinite Problems

6.6.1 An equivalent variational problem . . . .. ... ... ...
6.6.2 Proofsof Theorem 6.5. . . . . . . . . . ... . ... ....
6.6.3 Proof of Theorem 6.6 . . . . . . . . . . . ... ... ....

7. Solutions of nonlinear Dirac equations

7.1 Relativestudies . . . . . . . . . ... Lo e
7.2  Existence results for scalar potentials . . . . . . ... ... .. ...
7.3  Variational setting . . . . .. . .. .. ..o oL
7.4  The asymptotically quadraticcase . . .. ... ... ... ... ..
7.5  Super-quadraticcase . . . . . .. ...
7.6  More general external fields . . . . . ... ... ..o L.

T7:61 Mainresuls « o o o v o o @ 50 & 5 ¢ & 5 5 5 8 %@ ms

7.6.2  Variational arguments . . . . . ... .. ...

7.6.3 Proofof Theorem T:8 : « w w o s » s &+ 5 5 3 2 35 & « 50w &

7.6.4 Proofs of Theorems 7.6 and 7.7 . . . . ... ... .. ...
7.7 Semiclassical solutions . . . . . . ... ..o

8. Solutions of a system of diffusion equations

81 Reviews . . . . . ... e e e e
82 Mainwesults . . s o2 56 5 & @@ ¢ 5 ¢ 5 5 3 5 5 5 58S B 8 & s
8.3 Linear preliminaries . . . . . . . . . . . .. e

84 TFunctional setting « « « « s 5w e 2 5 0 ¢ 5 5 5 5 5 8 weo 9w 5@ 8
85 Solutionsto (FS) . . . . . .. .. .
8.6 Someextensions « o v . s @ @ @ w6 s 64 x F s s f e HEE B EE S &S
8.6.1 0is a boundary point of o(S) . .. ... ... ... ....
8.6.2 More general symmetries . . . ... ... ... ... ....
8.6.3 More general nonlinearities . . . . . . ... .. .. ... ..
8.6.4 More generalsystems . . ... ... .............

Bibliography
Indezx

97

97
100
103
106
116
121
122
123
131
131
133



Chapter 1

Introduction

The classical Calculus of Variations deals with finding minima of functionals
® : X — R that are bounded below. The basic idea of the direct method is to
consider a minimizing sequence ®(u,) — inf ®, to find a convergent subsequence
Up, — U, and to show that ®(u) = inf ®. In order to make this work the space
X should have a topology which is rather weak for the existence of a convergent
subsequence, and rather strong so that @ is lower semicontinuous. In many ap-
plications the functional is not bounded below and instead of a minimizer one is
interested in critical points. This is the concern of the Calculus of Variations in
the Large or Critical Point Theory, which has undergone an enormous develop-
ment in the last century due to the work of mathematicians like Morse, Lusternik,
Schnirelman, Palais, Smale, Rabinowitz, Ambrosetti, Lions, Struwe, Witten, Floer
and many others, with applications to problems from analysis, geometry and math-
ematical physics. Here one usually requires X to be a Banach manifold and ® to
be differentiable. An essential ingredient is the construction of a flow ¢ on X so
that ®(p(t,u)) is decreasing in ¢t. This flow is used in the spirit of Morse theory,
to construct deformations of sublevel sets @¢ = {u € X : ®(u) < ¢}, and to find
Palais-Smale sequences (u,,)n, that is: ®(u,,) is bounded and @'(u,,) — 0, replacing
the minimizing sequences. Typical results are the mountain pass theorem of Am-
brosetti and Rabinowitz or various linking theorems. The proofs use in an essential
way topological concepts based on the Brouwer or Leray-Schauder degree. The
theory has also been extended to deal with (semi-)continuous functions on metric
spaces, forced by problems from nonlinear elasticity (see [Degiovanni and Schuricht
(1998)]). Another generalization concerns variational methods for functionals on
closed convex subsets of Banach spaces developed by Struwe [Struwe (1989)] for
Plateau’s problem. Such functionals appear also in variational inequalities.
Motivated by several applications, for instance to finite- and infinite-dimensional
Hamiltonian systems, nonlinear Schrédinger equations and nonlinear Dirac equa-
tions, we were led to consider C'-functionals ® : E = E~ @ E* — R defined on
the product E = E~ @ E*t of Banach spaces E* with dim E* = oo but where one
needs to work with the weak topology on E~ in order to gain compactness. The
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functionals typically have the form
O(u) = %(]]u'*“2 —|lu7||?) = ¥(u) foru=u" +ut € E-@E". (1.1)

Since dim E* = oo the functional is strongly indefinite. Thus all of its critical points
have infinite Morse index. Moreover, ¥’ : E — E* is not completely continuous
and the Palais-Smale condition does not hold in our applications. This makes
applications of Leray-Schauder degree type arguments rather subtle. On the other
hand the functional ¥ : E — R is weakly sequentially lower semicontinuous and
¥’ : E — E* is weakly sequentially continuous. It turns out that the product
topology

T = (weak topology on E~) x (norm topology on E*)

is well suited for certain arguments because @ : (E,7) — R is sequentially upper
semicontinuous, and @ : (E,T) — (E*,weak* topology) is continuous. Given a
finite-dimensional subspace F C E% the unit ball of E~ @ F is 7-compact, and
given a bounded sequence (u, ), the negative part (u,, ), 7-converges (up to a sub-
sequence). When one wants to develop critical point theory with this topology
on E one needs to construct deformations on E which are 7-continuous. Defor-
mations are usually obtained by integrating vector fields which in turn are con-
structed with the help of partitions of unity. So one needs to construct these in a
T -Lipschitz continuous way. A more difficult situation occurs when one is interested
in “normalized solutions”, that is critical points of @ constrained to the unit sphere
SE = {u € E: ||u|]| = 1} or to other finite-codimensional submanifolds X of E.

The 7-topology on X is not metrizable, therefore the by now well developed
critical point theory for (semi-)continuous functions on metric spaces cannot be
applied. Instead the 7-topology is generated by a family D of semi-metrics. A
pair (X, D) consisting of a set X and a family of semi-metrics is called a gage
space; see [Kelley (1995)]. The paper [Bartsch and Ding (2006I)] is a first step
to develop critical point theory on gage spaces. We begin by settling some basic
topological questions. We introduce the concept of a Lipschitz map (X,D) — R
and of a Lipschitz normal gage space (disjoint closed sets can be separated by
Lipschitz maps). We find conditions on (X, D) so that X is Lipschitz normal and
so that Lipschitz partitions of unity (subordinated to a given open cover) exist. In
particular, we show that given a Banach space B, an arbitrary subset By C B, and
letting D be the family of semi-metrics on X = B* given by dy(z,y) := |[(b,z —
y)B.B*|, b € By, the gage space (B*,D) is Lipschitz normal. More generally, if
(Y,dy) is a metric space then the product gage space (B*, D) x (Y, dy) is Lipschitz
normal and has Lipschitz partitions of unity. In addition, if B is separable and
By C B is dense then also every locally closed subset (that is, an intersection of an
open and a closed subset) of this product gage space is Lipschitz normal and has
Lipschitz partitions of unity subordinated to an arbitrary open cover.

We then present some nonlinear problems where the abstract theory developed
here can be applied. These problems arise in mechanics, physics, control theory and
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other topics, which are variational in nature with the feature that their solutions
correspond to critical points of certain strongly indefinite functionals of the form
(1.1). We are interested in the existence and multiplicity of solutions to these
problems. The details are arranged in the last four chapters. In Chapter 5 we
study the homoclinic orbits in the classical Hamiltonian systems
d
jaz+L(t)z = R:(t,z) forteR
z(t) — 0 as |t| — oo

with periodic or non-periodic (with respect to the time ¢) Hamiltonians. Chapter 6
is devoted to the standing waves of the nonlinear Schrodinger equations

—Au+V(z)u = g(z,u) for z e RV
u(z) - 0 as |z| — oo

with V and g being periodic in . We also treat here semiclassical states of a
Hamiltonian system of perturbed Schrodinger equations:

—e2Ap + a(z)p = B()Y + Fy(z, 0, 9)
—e2 Ay + a(z)yp = B(x)p + Fyp(z, ¢, 9)
(v,9) € H'(RY,R?)
without any periodicity assumption. Chapter 7 deals with localized solutions of the
nonlinear Dirac equations with external fields
3
—ihz ardpu + Pfmu + M(z)u = Gy(z,u) for z € RY
k=1
u(z) — 0 as |z| — oo

with either scale potentials (i.e., M(z) = [V(z)), or vector potentials (say, the
Coulomb-type potentials). We also study semiclassical solutions (as & — 0). Finally,
in Chapter 8 we handle solutions of homoclinic type to the systems of diffusion
equations

Oiu — Azu+b(t,z)-Veu+ V(z)u = Hy(t, z,u,v)
—0v — Azv — b(t,z)- Vv + V(z)v = Hy(t, z,u,v)

for (t,z) € R x RY with u(t, ), v(t,z) — 0 as |t| + |z| — oco. In all these problems
the nonlinear terms are assumed to be either asymptotically linear or super linear.
In the arguments certain analytical estimates which are needed to check the as-
sumptions of the abstract results require different techniques. We prove new results
extending the previous relative works in the literature.






Chapter 2

Lipschitz partitions of unity

Let X be a set and D a family of semi-metrics on X. The pair (X, D) is called
a gage space. We write 7, for the topology on X associated to the semi-metric
d: X x X — R. Let Tp be the topology on X generated by all 74, d € D, that is,
the coarsest topology containing all 74, d € D. If D = {d, : n € N} is countable
then 7p is semi-metrizable. Namely, setting dy = ﬁlji: and d := ZneN Z%d.n one
easily checks that 7p = 7. We call D saturated if d,d’ € D implies max{d,d’'} € D.
Clearly, the family

D := {max{dy,...,dk} : k€N, di,...,dx € D}

is the smallest saturated family of semi-metrics on X which contains D, the satu-
ration of D. It generates the same topology as D. In this section, all topological
notions refer to 7p = 7.

A basis of this topology is given by the sets

Ue(z;d) :i={y € X : d(z,y) <€}, z€X,deD, €>0.

In fact, for z € X the sets U.(z,d), d € D, ¢ > 0, form a neighborhood basis because
given semi-metrics dy, . ..,dk, and given €1,...,ex > 0 we set € = min{ey,...,ex},
d = max{di,...,dr} and obtain

U (o dy) O o U (ydy) O U (23d)-
Definition 2.1 ([Bartsch and Ding (2006I)]). A map f : X — (M,dy) into

a semi-metric space M with semi-metric dpr is said to be Lipschitz (continuous) if
there exist d € D and \ > 0 such that

dm(f(x), f(¥)) < Ad(z,y) forallz,y € X.

f s called locally Lipschitz (continuous) if every x € X has a neighborhood U, such
that the restriction f|u, is Lipschitz continuous.

Clearly, a (locally) Lipschitz map is continuous. Lipschitz continuity depends of
course on D and not just on the topology 7p. We call two gage spaces (X, D)
and (Y, &) equivalent if there exists a homeomorphism kA : X — Y such that for
every map f : (Y,€) — (M, d) into a semi-metric space there holds: f is (locally)

5
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Lipschitz if and only if f o h is (locally) Lipschitz. In this sense, (X, D) and (X, D)
are equivalent.
For Y C X and d € D we set
d(.,Y): X - R, d(z,Y):=inf{d(z,y):y€Y}.
Then
|d(z1,Y) — d(z2,Y)| < d(z1,z2),

so d(.,Y) is Lipschitz. Clearly, the zero set of d(.,Y") is the closure of Y with
respect to the topology 74.

If A C X isclosed and = ¢ A then there exists a neighbourhood U, (z;d) C X\ A.
The map

f X —4 [Ov 1]5 f(y) = min{l,d(:c,y)/s}

is Lipschitz and satisfies f(z) = 0, f|la = 1. Thus one can separate a point and a
disjoint closed set by a Lipschitz map. In particular, X is completely regular. It is
easy to see that one can also separate a compact set and a disjoint closed set by a
Lipschitz map.

In general, X need not be normal. If X is normal we do not know whether two
disjoint closed sets can be separated by a locally Lipschitz map. Similarly, if X is
paracompact we do not know whether one can construct locally finite partitions of
unity subordinated to an open cover of X and such that the maps in the partition
of unity are locally Lipschitz. In this section we shall prove results in this direction.

Lemma 2.1. f: X — M is locally Lipschitz if, and only if, for every x € X there
ezists d € D, € > 0, A > 0 such that

dm(f(y), f(2)) < Md(y,2) for ally, z € Uc(z;d).

Proof. Suppose f is locally Lipschitz. Thus there exist d; € D, € > 0 such that
flU. (z:d,) is Lipschitz, that is, for some dz € D, A > 0 we have

dm (f(y), f(2)) < Mda(y,2) for all y, z € Ue(z;dy).

Setting d := max{dl, d2} the conclusion follows. The other implication is trivial.[J

Lemma 2.2. Let f: X — M be locally Lipschitz. Then for K C X compact there
ezists a neighbourhood U of K in X such that f|y is Lipschitz.

Proof. For z € K we choose d; € D, €, > 0, A\, > 0 such that

dm (f(y), f(2)) < Azdz(y,2) for y,z € Ue, (z;dz).

There exist z1,...,z, € K with K C U;;l Uezj/2(a:j;d1j). For j=1,...,n we set
€j = Eg;, dj = dzj, /\j = Azj, Uj = Uej/z(xj;dj), and U := U_?:l Uj.
We first show that f(U) is bounded, that is

S = sup{dm(f(2), f(¥)) : &,y € U} < 0.
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For z,y € U there exist i,j with € U;, y € U;. Then we have

M (f(2), () < dm(f(@), f(@) + dnma (f (), f(5)) + dnr(f (), F(¥))
< Nidi(z, i) + dm (f(@:), f(z5)) + Aidj(z5, )

/\ i€i AGEj
g e (f (i), () +
A€k NEL
< e
_n}ﬁx( 4 daa (o), @) + 22
< 00.
Now we prove that f|y is Lipschitz. Set £ := Zimin{ei,...,en}, A =
max{\i,...,A\n,S/e} and d := max{di,...,d,}. For z,y € U we choose j with

y € U;. If dj(z,y) < €;/2 then z € U, (z;;d <) and therefore
du (f(2), £ () < Ajdj(m,y) < Md(z,y),
as required. If on the other hand d;(z,y) > €;/2 > € then

w(F(@), (1)) < S < My(z,9) < Md(z,p). o

Lemma 2.3. Let K C X be compact and A C X be closed such that AN K = 0.
Then there ezists d € D with

d(K,A) =inf{d(z,y) :z € K,y € A} > 0.

Proof. There exist z1,...,2n € K, €1,...,en > 0 and di,...,d, € D with
K C U Ue,(zj;d;) and U Use, (zj;d;) C X\A Then d := max{dy,...,d,} does
the Job d(K,A) > mln{el,... €k} d
In the situation of Lemma 2.3 the map
d(z, K)
' X 1 =

is well defined and Lipschitz, because the maps d(., K), d(., A) are Lipschitz and
d(z,K)+d(z,A) > d(K,A) >0 for all x € X. Clearly, flx =0 and f|4 = 1. Thus
a compact set K and a disjoint closed set A can be separated by a Lipschitz map.

Definition 2.2 ([Bartsch and Ding (2006I)]). A gage space (X,D) is said to
be Lipschitz normal if X ts Hausdorff, (equivalently, D separates points), and if for
any two closed disjoint sets A, B C X there exists a locally Lipschitz map f : X —
(0,1) with fla =0 and f|lg =1.

If D = {d} and d is a metric then (X, D) is Lipschitz normal.

Lemma 2.4. Suppose (X, D) is Lipschitz normal and paracompact. Then for every
open covering % of X there exists a subordinated locally finite partition of unity
consisting of locally Lipschitz maps.
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Proof. Let {Ux: X € A} be a locally finite refinement of % and let {Vx : A € A}
be an open cover of X with V5 C U, for all A € A. Let py : X — [0,1] be a locally
Lipschitz map with paly7, =1 and pa|x\v, = 0. Then

pr X — [1’00)’ p(a:) - Z pA(IB),
A€EA
is well defined and locally Lipschitz because Vx C supp px C Uy, hence each z € X
has a neighbourhood which intersects only finitely many supp px. The maps 7 :=
pa/p: X — [0,1], A € A, are also locally Lipschitz and form the required partition
of unity. O

We shall now find conditions on the topology of X such that (X, D) is Lipschitz
normal. Recall that X is said to be o-compact if there exists an increasing sequence
X1 C X C ... of compact subsets of X whose union is X. If X is o-compact then
it is also paracompact (hence normal) because X is regular.

Theorem 2.1 ([Bartsch and Ding (20061)]). If X is o-compact then (X, D) is
Lipschitz normal.

Proof. Let () = XoC X; C X2 C...be compact subsets of X with X = UL X
Let A,B C X be disjoint closed subsets. We construct inductively sequences
(Vi)nen, and (Wy)nen, of open subsets of X such that V,, C V11, W,, C Wp4,
(X\AUANX,) CV,, BUX, CW,,and W,,NA C V,, for all n € Ng. For
n =0 we set Vo := X \ A and choose a neighbourhood W of B with Wy C V;. If
V. and W, have been defined for some n > 0, observe that

A, =ANXpp\VaC X \Wn is compact. (2.1)
According to Lemma 2.3 there exists d,, € D with
o %dn(An,Wn) > 0. (2.2)
Now we define
Vagi i= Vi U, (Ag; dp)- (2.3)

Since (X \ A)U(ANX,) C V, we have Xp41 C (X \A)U(ANXpn41) C Vpga- By

normality there exists an open neighbourhood W}, of X,,;; with Wos € Voauas

Setting W,41 = W U W], we obtain BU X,,4; C W,y and Wn+1 NAC

(Wn,NA)UW', 41 C Vpp1. This finishes the construction of (Va)nen, and (Wp)nen,-
For n € Ny we now consider the map

dn(ra Udn (An; dn))
dn (2, Us, (An; dn)) + dn(z, X \ Uss,, (An; dn))
This map is well defined and locally Lipschitz. Clearly we have

fan: X —[0,1], falz):=

kel =0 & d.le.4,)<d,
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and
fa(@) =1 & du(z,4)2 20,.

Since W,, C X \Uas, (An; dy) by (2.2) we see that fn|w, = 1 and therefore fr|w, =
1 for all m > n. This implies that the map f := inf,en, fn satisfies flw, =
ming<k<n fk|w,. Thus f is locally Lipschitz because {W, : n € No} is an open
cover of X. From B ¢ Wy ¢ W, we deduce fp|g =1 for all n, so f|gp = 1. Finally,
observe that

n—1

Vo = (X \A)U | ) Us,(Ak;dx) forn>0,
k=0
hence f|v,na = 0. This yields f|anx, =0 for all n and thus f|4 = 0. O

It is clear that a closed subspace Y C X with the induced family Dy of semi-metrics
dly : Y xY — R is Lipschitz normal when (X, D) is Lipschitz normal. In [Smirnov
(1951)] Smirnov proved that an open Fy-subspace Y C X of a normal space X
is normal. Recall that Y is an F,-subspace of X if Y = J,,cy Y» is the union of
countably many closed subsets Y;, of X. A corresponding result holds for Lipschitz
normality.

Theorem 2.2 ([Bartsch and Ding (2006I)]). Let (X,D) be Lipschitz normal
andY C X be an open F,-subspace. Then (Y,Dy) is Lipschitz normal.

Proof. LetY = UneN Y, with Y, € X closed and Y,, C Y, 4+; for n € N. Consider
two closed disjoint subsets A, B of Y. We write A, B for the closures of A and B in
X. Thus ANY = A, BNY = Band ANBNY = 0. As in the proof of Theorem 2.1
we construct inductively open subsets V,,, W,, of Y with V,, C V41, W,, C Wy,
Y\AuANY,)CV,, BUY, CcW, and W,NANY C V,, for all n € Ng; here
Yo :=0. We set Vp :=Y \ A and choose an open neighbourhood Wy C Yof B such
that WoNY C Vy. This is possible since Y is normal. Suppose V;,, W,, are defined
for some n > 0. Then A, := AN Y41 \ V is closed in X and disjoint from the
closed subset W, of X. Since X is Lipschitz normal there exists a locally Lipschitz
continuous map f, : X — [0, 1] with fn|a, =0 and fnl, =1. We set

Vast =VaUfz el : fulz) < 1/2}
so that
Yn+1 C (Y\A) U (Aﬂyn+1) - Vn+1.

As a consequence of the normality of X there exists an open neighbourhood W, ,
of Yn+1 with W’n+1 C Vn+1. We set Wn+1 =T, U W711+l'

In order to define a Lipschitz map f : ¥ — [0,1] which separates A and B let
x : [0,1] — [0,1] be defined by x(t) = 0 for 0 < t < 1/2, and x(t) = 2t — 1 for
1/2 <t < 1. Now we define

Y =001, f(z):= inf xo fa(2).
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From fu|, =1 wededuce fu|p, = 1forallm > n, hence flg, = Og}clg xo felw,, -

This implies that f|g is locally Lipschitz for n € Ny, and consequently f is locally
Lipschitz because {W,, : n € N} is an open cover of Y. Moreover, f|g = 1 because
B c Wy € W, for all n € Ng. Finally, observe that

n—1

Vo=(Y\A)U U{yey fily) <1/2},

and that
n—1 n—1
AnYncAnVac | J{yveY: fily) <1/2} c J{y e Y : xo fuly) = 0}.
k=0 k=0
This implies f|any, = 0 for all » € N and therefore f|4 = 0. O

Remark 2.1. From the above proof one sees that each of the locally Lipschitz maps
from Y to [0, 1] of Theorem 2.2 can be required to be also a locally Lipschitz map
from X to [0,1].

Next we investigate the behavior of Lipschitz normality with respect to finite
products. Recall that the product X x Y of normal spaces X,Y need not be
normal whereas the product of a o-compact space X and a paracompact space Y
is paracompact, hence normal by a result of Michael (see Proposition 4 of [Michael
(1953)]). We extend this result to Lipschitz normality. In addition to (X, D) we
consider a set Y and a family £ of semi-metrics on Y. Let 7¢ be the associated

topology on Y. For d € D and e € £ we have an induced semi-metric d x e on
Z = X x Y defined by

d x 6((-1‘1,?!1), (Iz,yz)) := max{d(z1, z2), e(y1,¥2) }-
The topology on X x Y generated by Dx & = {dxe:d € D,e € £} is the product
topology (X, 7p) x (Y, Zg).

Theorem 2.3 ([Bartsch and Ding (2006I)]). Let (X,D) be o-compact and
(Y, E) paracompact and Lipschitz normal. Then (X xY,D x £) is Lipschitz normal.

Proof. Let (X,)nen be an increasing sequence of compact subsets of X with X =
Unen Xn and Xo = 0. Weset Z:= X xY and Z, := X, xY,n € N. Let 4, B be
closed subsets of Z and set A, := ANX x{y} for y € Y. We proceed as in the proof
of Theorem 2.2 and construct inductively increasing sequences (Vn)neN, (Wn)nen
of open subsets of Z with (Z\ A)u(AnZ,)CcV,, BUZ, CW,, W, NACV,.
The inductive step also leads to a locally Lipschitz map fn, : X — [0, 1] which will
be used later to finish the proof.

We begin with Vj := Z\ A and an open set W), satisfying B C Wy and W, C V.
Here we used that Z is normal. Suppose V,,, W,, are given for some n > 0. Then
Ay N Zyy1 \ Vp, is compact and disjoint from W, for any y € Y. Thus there exist
open sets Wy, V,, C X, and e, € &, &y > 0 such that V,, € W,, and

AyNZpnai \ Vo CVy x Ue, ja(yiey) C Wy x Ue, (yi€y) C Z\ W
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Let Py : X XY — Y be the projection. Since X, is compact the restriction Py |z, is
closed. Thus Py (AN Z,+1\ Va) is a closed subset of Y and therefore paracompact.
Consequently there exists a locally finite open refinement {Ny : A € A,} of the
covering {Ue,/2(y;€y) : Yy € Py (AN Zny1 \ Va)} of Py(AN Znta \ Va). There also
exists an open covering {P) : A € Ap} of Py (AN Zn41 \ Vi) satisfying Py C N,.
For A € A, we choose y\ = y with N\ C U, /2(y;ey). Then {V;, x Py : A € An}
and {Wy, x Ny : XA € A,} are locally finite open (in X xY) covers of ANZ, 1\ V,
such that
Vy,& Xﬁ,\CWy,\ XN)‘CW%\ XW,\CZ\W.,,.
We set
Vas1 :=VoU |J V4, x P)
AEA,
so that
Zny1 C(Z\A)U (AN Znt1) C Vo
Since X x Y is normal there exists an open neighbourhood W}, of Z, 4, in X xY
with W/, 41 C Vag1. Setting Wiy1 := W,UW), |, we clearly have BUZp 41 C Whya
and
Wn+1 NAC (Wn NnA) UWTH—I C Vaiie
Now we construct the map f, : X — [0,1]. For A € A, let g5 : X — [0,1] be a
locally Lipschitz map with g,\|V“ = 0 and ga|x\w,, = 1. It exists because (X, D) is
Lipschitz normal by Theorem 2.1. Similarly, let hy : Y — [0, 1] be locally Lipschitz
satisfying hy|p, =0 and h/\|y\'1\7A = 1. Now we define

fap1 i X XY — [0) 1]: fn+1(-'3ay) = )‘lél/f ma.x{g,\(x),h)\(y)}.
Setting
grxhy: X xY —[0,1], (z,y)— max{gx(z),hr(y)},

we see that gy x h)\|vuA <Py = 0 and gx X ha|z\(w,, xn,) = 1. Clearly gx X hy is
locally Lipschitz because gx and hy have this property. Since {W,, x Ny : A € A,}
is locally finite it follows that for each (z,y) € X x Y there exists a neighbourhood
U of (z,y) and a finite set A C A, with fr11|v = I;‘lei}\lg,\ X hy|y. This implies that

fn+1 is locally Lipschitz. Finally we define the map
f=inffrn: X xY —=[0,1], f(z,y)= inf fo(z,y).
n neN

By construction we have fn|"vV,, = 1 because Ww xNyCXxY \ W, for every
A. This implies the local Lipschitz continuity of f as in the proof of Theorem 2.2.
Clearly f|p = 1 because B C Wy C W,, for every n € Ng. And f|a = 0 follows
inductively from
AnZn—H\V‘n - U (VyA x P)‘)
€A,
and fnlvn x P, = 0 for every n. O



