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Introduction

. .. cette étude qualitative (des équations
difféerentielles) aura par elle-méme un intérét du
premier ordre . . .

HENRI POINCARE, 1881.

We present in this book a view of the Geometric Theory of Dynamical
Systems, which is introductory and yet gives the reader an understanding of
some of the basic ideas involved in two important topics: structural stability
and genericity.

This theory has been considered by many mathematicians starting with
Poincaré¢, Liapunov and Birkhoff. In recent years some of its general aims
were established and it experienced considerable development.

More than two decades passed between two important events: the work
of Andronov and Pontryagin (1937) introducing the basic concept of
structural stability and the articles of Peixoto (1958-1962) proving the density
of stable vector fields on surfaces. It was then that Smale enriched the theory
substantially by defining as a main objective the search for generic and stable
properties and by obtaining results and proposing problems of great relevance
in this context. In this same period Hartman and Grobman showed that local
stability is a generic property. Soon after this Kupka and Smale successfully
attacked the problem for periodic orbits.

We intend to give the reader the flavour of this theory by means of many
examples and by the systematic proof of the Hartman—-Grobman and the
Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem
(Chapter 3) and Peixoto’s Theorem (Chapter 4). Several of the proofs we give

vii



Viil Introduction

are simpler than the original ones and are open to important generalizations.
In Chapter 4, we also discuss basic examples of stable diffeomorphisms with
infinitely many periodic orbits. We state general results on the structural
stability of dynamical systems and make some brief comments on other
topics, like bifurcation theory. In the Appendix to Chapter 4, we present the
important concept of rotation number and apply it to describe a beautiful
example of a flow due to Cherry.

Prerequisites for reading this book are only a basic course on Differential
Equations and another on Differentiable Manifolds the most relevant
results of which are summarized in Chapter 1. In Chapter 2 little more is
required than topics in Linear Algebra and the Implicit Function Theorem
and Contraction Mapping Theorem in Banach Spaces. Chapter 3 is the
least elementary but certainly not the most difficult. There we make
systematic use of the Transversality Theorem. Formally Chapter 4 depends
on Chapter 3 since we make use of the Kupka-Smale Theorem in the more
elementary special case of two-dimensional surfaces.

Many relevant results and varied lines of research arise from the theorems
proved here. A brief (and incomplete) account of these results is presented
in the last part of the text. We hope that this book will give the reader an
initial perspective on the theory and make it easier for him to approach the
literature.

Rio de Janeiro, September 1981. JAcoB PaLs, JR.
WELINGTON DE MELO
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Chapter 1

Differentiable Manifolds
and Vector Fields

Thischapter establishes the concepts and basic facts needed for understanding
later chapters.

First we set out some classical results from Calculus in R", Ordinary
Differential Equations and Submanifolds of R". Next we define vector fields
on manifolds and we apply the local results of the Theory of Differential
Equations in R" to this case. We introduce the qualitative study of vector
fields, with the concepts of a- and w-limit sets, and prove the important
Poincaré-Bendixson Theorem.

In Section 2 we define the C" topology on the set of differentiable maps
between manifolds. We show that the set of C" maps with the C" topology is a
separable Baire space and that the C® maps are dense in it. From this we
obtain topologies with the same properties for the spaces of vector fields and
difftomorphisms.

Section 3 is devoted to the Transversality Theorem, which we shall use
frequently.

We conclude the chapter by establishing the general aims of the Geometric
or Qualitative Theory of Dynamical Systems. In particular we discuss the
concepts of topological equivalence and structural stability for differential
equations defined on submanifolds of R".

§0 Calculus in R” and Differentiable Manifolds

In this section we shall state some concepts and basic results from Calculus
in R", Differential Equations and Differentiable Manifolds. The proofs of the
facts set out here on Calculus in R" can be found in [46], [48]; on Differential

1



2 1 Differentiable Manifolds and Vector Fields

Equations in the much recommended introductory texts [4], [41], [116] or
the more advanced ones [33], [35] and also [47]; on Differentiable Manifolds
in [29], [38], [49].

Let f: U = R™ —» R* be a map defined on the open subset U of R™. We
say that fis differentiable at a point p of U if there exists a linear transformation
T: R™ - R* such that, for small v, f(p + v) = f(p) + T(v) + R(v) with
lim,_ o R(v)/||lv|]| = 0. We say that the linear map T is the derivative of f at p
and write it as df (p) or sometimes df, or Df (p). The existence of the derivative
of f at pimplies, in particular, that f is continuous at p. If f is differentiable at
each point of U we have a map df: L(R™, R*) which to each p in U associates
the derivative of f at p. Here L(R™, R¥) denotes the vector space of linear
maps from R™ to R* with the norm ||T| =sup{||Tv|; |v|| = 1}. If df is
continuous we say that fis of class C* in U. It is well known that fis C' if and
only if the partial derivatives of the coordinate functions of f, df /ox;: U - R,
exist and are continuous. The matrix of df (p) with respect to the canonical
bases of R™ and R¥ is [(df'/dx;)(p)]. Analogously we define d*f(p) as the
derivative of df at p. Thus d*f(p) belongs to the space L(R™, L(R™, R¥)),
which is isomorphic to the space L2(R™; R¥) of bilinear maps from R™ x R™
to R*. The norm induced on L*(R™; R¥) by this isomorphism is |B| =
sup{||B(u, v)|; |lull = |lv| = 1}. We say that f is of class C* in U if d*f:
U - L*(R™; R¥)is continuous. By induction we define d"f (p) as the derivative
at p of d"~'f. We have d'f(p) € L"(R™; R¥), where L"(R™; R¥) is the space of
r-linear maps with the norm |C| = sup{||C(vy,...,0v)|; o4l =---=
Iv,|l = 1}. Then we say that f is of class C" in U if d"f: U —» L'(R™; R*) is
continuous. Finally, f'is of class C* in U if it is of class C" for all r > 0. We
remark that f’is of class C" if and only if all the partial derivatives up to order
r of the coordinate functions of fexist and are continuous. Let U, V' be open
sets in R™ and f: U — V a surjective map of class C". We say that f is a
diffeomorphism of class C" if there exists amap g: V — U of class C" such that
g  f is the identity on U.

0.0 Proposition. Let U = R™ be an open set and f,: U — R* be a sequence of
maps of class C*. Suppose that f, converges pointwise to f: U — R* and that
the sequence df, converges uniformly to g: U — L(R™, R*). Then f is of class
Cland df = g. O

0.1 Proposition (Chain Rule). Let U = R™ and V < R" be open sets. If
f: U — R"is differentiable at p € U,f(U) < V and g: V — R is differentiable
at q = f(p), then go f: U — R* is differentiable at p and d(g - f)p) =
dg(f(p)) = df (p). O

Corollary 1. If f and g are both of class C", then g - f is of class C". |

Corollary 2. If f: U - R* is differentiable at pe U and o: (—1,1) > U is a
curve such that a(0) = p and (d/dt)x(0) = v, then f o o is a curve which is
differentiable at 0 and (d/dt)(f - «)(0) = df (p)v. O



§0 Calculus in R" and Differentiable Manifolds 3

0.2 Theorem (Inverse Function). Let f: U = R™ — R™ be of class C", r > 1.
If df (p): R™ — R™ is an isomorphism, then f is a local diffeomorphism at p € U
of class C"; that is, there exist neighbourhoods V < U of p and W <= R™ of
f(p)and a C" map g: W — V such that g f = Iy, and f - g = I, where I,
denotes the identity map of V and I, the identity of W. O

0.3 Theorem (Implicit Function). Let U < R™ x R" be an open set and
f:U->R"aC map, r > 1. Let zy = (xq, Vo) € U and ¢ = f(z,). Suppose
that the partial derivative with respect to the second variable, D, f(z,):
R" —» R", is an isomorphism. T hen there exist open sets V < R™ containing x,,
and W < U containing z, such that, for each x € V, there exists a unique
&(x) € R" with (x, &(x)) € W and f(x, &(x)) = ¢. The map &: V — R", defined
in this way, is of class C" and its derivative is given by d&(x) =

[D, f(x, €O~ e Dy f(x, E(x)). O
Remark. These theorems are also valid in Banach spaces.

0.4 Theorem (Local Form for Immersions). Let U = R™ be open and
f:U - R""a C" map, r > 1. Suppose that, for some x, € U, the derivative
df (xo): R™ — R™*"is injective. Then there exist neighbourhoods V- < U of x,,
W < R" of the origin and Z = R™™™" of f(x,) and a C" diffeomorphism h:
Z -V x Wsuchthat ho f(x) = (x,0) for all x e V. O

0.5 Theorem (Local Form for Submersions). Let U = R™ ™" be open and
f:U—->R"a C" map, r > 1. Suppose that, for some z, € U, the derivative
df (zo) is surjective. Then there exist neighbourhoods Z < U of z,, W < R" of
¢ = f(zg) and V = R™ of the origin and a C" diffeomorphism h: V. x W — Z
such that f o h(x,w) = wforall xe V and w e W. O

Let f:UcR"—>R"be a C" map, r > 1. A point x e U is regular if
df (x) is surjective; otherwise x is a critical point. A point ¢ € R" is a regular
value if every x € f~!(c) is a regular point; otherwise c is a critical value. A
subset of R" is residual if it contains a countable intersection of open dense
subsets. By Baire’s Theorem every residual subset of R" is dense.

0.6 Theorem (Sard [64]). If f: U = R™ - R" is of class C® then the set of
regular values of fis residual in R". ]

We should remark here that if f ~*(¢) = J then ¢ is a regular value. For
the existence of a regular point x € U we need m > n. If m < n all the points
of U are critical and, therefore, f(U) is “meagre” in R", that is R" — f(U)
is residual.

We are going now to state some basic results on differential equations. A
vector field on an open set U = R™ is a map X: U —» R™. We shall only
consider fields of class C", r > 1. An integral curve of X, through a point
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p € U, is a differentiable map o: I — U, where I is an open interval containing
0, such that «(0) = p and «'(t) = X(a(t)) for all t € I. We say that « is a
solution of the differential equation dx/dt = X(x) with initial condition

x(0) = p.

0.7 Theorem (Existence and Uniqueness of Solutions). Let X be a vector field
of class C",r > 1, on an open set U — R™ and let p € U. Then there exists an
integral curve of X, a: I — U, with «(0) = p. If p: J — U is another integral
curve of X with p(0) = p then o(t) = p(t) forallt e I n J. O

A local flow of X at pe U is a map ¢: (—¢, &) x V, - U, where V, is a
neighbourhood of p in U, such that, for each g € V,, the map ¢,: (—¢,¢) —» U,
defined by ¢,(t) = ¢(t, g), is an integral curve through g; that is, ¢(0, 9) = ¢
and (0/0)e(t, q) = X(e(t, q)) for all (1, q) e (—¢, &) x V.

0.8 Theorem. Let X be a vector field of class C"in U, r > 1. For all pe U
there exists a local flow, ¢: (—¢,€) x V, — U, which is of class C". We also

have
DIDZ(P(ta 4) = DX((p(t! 41)) 5 DZ (p(t, Q)

and D, (0, q) is the identity map of R™, where D, and D, denote the partial
derivatives with respect to the first and second variables. J

We can also consider vector fields that depend on a parameter and the
dependence of their solutions on the parameter. Let E be a Banach space and
F:Ex U—->R"a C" map, r > 1. For each e€ E the map F,: U — R",
defined by F.(p) = F(e, p), is a vector field on U of class C’. The following
theorem shows that the solutions of this field F, depend continuously on the
parameter e € E.

0.9 Theorem. For every e € E and p € U there exist neighbourhoods W of e in
Eand V of pin U and a C" map @:(—¢,¢&) X V x W — U such that

»0, 4, 4) = g,
D,o(t, g, 4) = F(4, o(t, g, 1))
for every (t,q, A) e (—¢e, &) x V x W. O

Next we introduce the concept of differentiable manifold. To simplify the
exposition we define manifolds as subsets of R*. At the end of this section we
discuss the abstract definition.

Let M be a subset of Euclidean space R*. We shall use the induced topology
on M; that is, A = M is open if there exists an open set A’ = R* such that
A = A n M. We say that M = R¥ is a differentiable manifold of dimension
m if, for each point p € M, there exists a neighbourhood U — M of p and a
homeomorphism x: U — U,, where U, is an open subset of R™, such that
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Figure 1

the inverse homeomorphism x~': U, = U < R* is an immersion of class
C*. That is, for each u € U, the derivative dx~ '(u): R™ — R* is injective. In
this case we say that (x, U) is a local chart around p and U is a coordinate
neighbourhood of p. If the homeomorphisms x ~ ! above are of class C” we say
that M is a manifold of class C". What we have called a differentiable manifold
corresponds to one of class C®. It follows from the Local Form for Immer-
sions 0.4 that, if (x, U) is a local chart around p € M, then there exist neigh-
bourhoods 4 of p in R, V of x(p) and W of the origin in R*"™ and a C*
difftomorphism h: A - V x W such that, for all ge A n M, we have
h(g) = (x(qg), 0). In particular, a local chart is the restriction of a C* map of
an open subset of R* into R™ (Figure 1). From this remark we obtain the
following proposition.

0.10 Proposition. Let x: U —» R™ and y: V — R™ be local charts in M. If
U NV # O then the change of coordinates y > x ': x(U n V) - y(U N V)
is a C* diffeomorphism (Figure 2). O

yuwnv)

Figure 2
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We shall now define differentiable maps between manifolds. Let M™ and
N" be manifolds and f: M™ — N" a map. We say that f'is of class C" if, for
each point p € M, there exist local charts x: U - R™around pand y: V — R"
with f(U) = V such that yo fox™1: x(U) - y(V) is of class C". As the
changes of coordinates are of class C* this definition is independent of the
choice of charts.

Let us consider a differentiable curve a: (—¢, &) - M < R* with (0) = p.
It is easy to see that o is differentiable according to the above definition if and
only if « is differentiable as a curve in R*. Hence there exists a tangent vector
(da/dt)(0) = o/(0). The set of vectors tangent to all such curves « is called the
tangent space to M at p and denoted by TM . Let us consider a local chart
x: U - R™ x(p) = 0. Itis easy to see that the image of the derivative dx~ (0)
coincides with TM,. Thus TM,, is a vector space of dimension m.

Let f: M — N be a differentiable map and v € TM,,, p e M. Consider a
differentiable curve a:(—¢,¢) = M with «(0) = p and o'(0) = v. Then
feoa:(—e e)— N is a differentiable curve, so we can define df(p)v =
(d/dt)(f o a)(0). This definition is independent of the curve a.

The mapdf(p): TM, — TNy, is linear and is called the derivative of f at p.

As a differentiable manifold is locally an open subset of a Euclidean space
all the theorems from Calculus that we listed earlier extend to manifolds.

0.11 Proposition (Chain Rule). Let f: M — N and g: N — P be maps of class
C" between differentiable manifolds. Then g o f: M — P is of class C" and
d(g o f)p) = dg(f(p)) - df (p). O

A map f: M — N is a C" diffeomorphism if it is of class C" and has an
inverse f ~! of the same class. In this case, for each pe M, df (p): TM, —
TN, is an isomorphism whose inverse is df ~ Y(f(p)). In particular, M and
N have the same dimension. We say that f: M — N is a local diffeomorphism
at p e M if there exist neighbourhoods U(p) € M and V(f(p)) = N such
that the restriction of f to U is a diffeomorphism onto V.

0.12 Proposition (Inverse Function). If f: M — N is of class C", r > 1, and
df (p) is an isomorphism for some p € M then f is a local diffeomorphism of class
C"at p. |

Now consider a subset S of a manifold M. S is a submanifold of class C" of
M of dimension s if, for each p € S, there exist open sets U < M containing p,
V < R* containing 0 and W < R™* containing 0 and a diffeomorphism of
class C" @: U - V x W such that ¢(S n U) = V x {0} (Figure 3).

We remark that R¥ is a differentiable manifold and that, if M = R* is a
manifold as defined above, then M is a submanifold of R*, The submanifolds
of M — RF are those submanifolds of R that are contained in M.



