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Preface

The study of Soft Matter is concerned with understanding the properties of
materials which have structural length scales in the range of a few nanometers
to several micrometers, and which are strongly affected by thermal fluctations.
Several interesting properties follow immediately from these seemingly sim-
ple conditions. For example, the long length scales imply that small external
fields can lead to large perturbations, which is the origin of the name “Soft
Matter”. Similarly, long length scales and an energy scale on the order of
the thermal energy kg7 imply large structural relaxation times. Therefore,
phenomena far from thermal equilibrium play a very important role.

Most soft-matter components are macromolecules which exhibit polymeric,
colloidal, or amphiphilic properties. Although these materials have been stud-
ied for a long time, it has been realized only in the last two decades that these
systems share many properties, so that a large synergy arises from a unifi-
cation of these subfields. In recent years, this unification has become more
urgent due to the fact that many biological systems and biomaterials simul-
taneously contain several components with different polymeric, amphiphilic
and colloidal character. One example, in which all these properties are united
in a single macromolecule, is provided by membrane proteins. They con-
sist of a linear chain of amino acids, and are therefore hetero-polymers, have
hydrophobic and hydrophilic parts to favor localisation in a lipid bilayer mem-
brane, and are therefore amphiphilic, and behave in some of their properties
like a cylindrical barrel, and are therefore colloidal.

The first volume of this Soft Matter series focused on system in which the
polymeric properties were dominant. In this second volume, our attention
is turned to systems in which the colloidal character prevails. In Chapter 1,
Zvonimir Dogic and Seth Fraden provide an excellent overview of the sur-
prising variety of structures which self-assemble in the apparently simple
system consisting of a mixture of colloidal spheres and rods. In addition, the
system contains non-adsorbing polymers, which serve to induce an effective
attractive interaction between the colliodal components. This “depletion in-
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teraction” arises from the change of accessible conformations of a polymer
in the vicinity of surfaces. The theoretical description of the colloid-polymer
interaction is the topic of Chapter 2 of Erich Eisenriegler, who employs the
very powerful tools developed for critical phenomena to extract the universal
properties of these systems. Finally, in Chapter 3, Jan Dhont and Wim Briels
authoritatively describe the behavior of rod-like colloids in shear flow. This
chapter addresses some of the very interesting phenomena arising in systems
far from thermal equilibrium. While such non-equilibrium dynamics play an
important role in all soft matter systems, colloids provide a nice model sys-
tem in which to study them because colloid suspensions are comparatively
simple. Thus progress in studying and understanding the new phenomena
is achieved most easily.

We anticipate that the high standards set by the authors of these initial two
volumes will inspire a similar level in those participating in subsequent ones.
For our part, we will strive to ensure that the contents of future volumes will
be as stimulating as these initial ones.

November 2005 Gerhard Gompper and Michael Schick
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1
Phase Behavior of Rod-Like Viruses and
Virus—Sphere Mixtures

Zvonimir Dogic and Seth Fraden

Abstract

An overview is given of the experimental work on the liquid crystalline phase
behavior of semi-flexible viruses in an aqueous solution. We start by briefly
summarizing the theoretical work of Onsager which describes the isotropic-
nematic phase transitions of perfectly rigid rods. Extensions of the Onsager
theory to the case of semi-flexible and charged rods are presented. In the first
part of the review we focus on the phase behavior of a pure solution of semi-
flexible virus fd. With increasing concentration fd form isotropic, cholesteric
and smectic phase. In the limit of high ionic strength the agreement between
the Onsager theory and experiments on the isotropic-nematic phase of fd
virus is quantitative. The discrepancies at low ionic strength strongly hint at
a need to rigorously incorporate electrostatic interactions into phase behavior
of rigid rods. In the second part of the review we focus on the phase behavior
of mixtures of rods with either hard spheres or flexible polymers. Amongst
others we described a number of novel phases observed in these mixtures
such as a lamellar phase, columnar phase, colloidal membranes and surface
induced smectic phase. These structures are still very poorly understood and
there is a clear need for the theoretical work explaining their stability.

1.1
Introduction

The reasons physicists give for studying colloids are varied. Our initial mo-
tivation was that colloids can serve as model experimental systems to study
simple fluids because, with careful preparation, colloids approximate hard
particles. Numerous studies have investigated the phase behavior, structure,
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and macroscopic viscoelastic properties of suspensions of spherical colloids
(Poon and Pusey 1995). Far less studied have been colloids of anisotropic
shape, in spite of their long-recognized similarity to liquid crystals. Coun-
terintuitively, hard-rod fluids are theoretically simpler systems to understand
than hard spheres (Forsyth et al. 1978). This surprising fact was first rec-
ognized by Onsager (1949), who realized that the isotropic-nematic (I-N)
transition in the rod-like colloid tobacco mosaic virus (TMV) occurred at such
low concentrations that only two-body interactions were necessary in order
to quantitatively explain the I-N phase transition. In fact, in the limit of long
thin rods, Onsager’s theory becomes exact. This is in contrast to the theory
of phase transitions of hard spheres, for which no exact results exist (in three
dimensions).

For some years, the Complex Fluids Group at Brandeis has studied the
liquid-crystalline behavior of suspensions of TMV (Fraden et al. 1985; Hurd
et al. 1985; Wen and Meyer 1987; Oldenbourg et al. 1988; Fraden et al. 1989;
Meyer 1990; Fraden et al. 1993; Wang et al. 1994; Fraden 1995; Adams and
Fraden 1998) and filamentous phage fd (Tang and Fraden 1993; Tang and
Fraden 1995; Fraden 1995; Tang and Fraden 1996; Dogic and Fraden 1997;
Adams et al. 1998; Dogic et al. 2000; Dogic and Fraden 2001; Grelet and
Fraden 2003; Dogic 2003; Purdy et al. 2003; Purdy and Fraden 2004a; Purdy
and Fraden 2004b; Purdy et al. 2005). TMV is a beautiful colloidal rod (Kreibig
and Wetter 1980; Wetter 1985). It is completely rigid and forms isotropic,
nematic, smectic and colloidal crystalline phases. However, TMV is difficult to
work with. One must cultivate tobacco plants, infect them with virus, harvest
the crop, extract the virus — which takes months — and, in addition, all this
must be done with care to preserve the monodispersity of the virus. Physics
graduate students rebel at the thought of producing enough virus for a PhD
thesis! Without an abundant source of TMV, studies of its phase behavior are
impracticable.

So our laboratory switched from TMV to the semi-flexible bacteriophage
fd, which also forms several liquid-crystalline phases: isotropic, cholesteric,
and smectic, but not colloidal crystals. Because fd infects bacteria, growing
fd is relatively quick and easy. Furthermore, genetic engineering of fd is well
established, and we have produced mutants of varying length and charge.

This chapter describes the phase behavior of fd virus suspensions. First, we
present our results on fd alone. The results obtained up to 1995 are summa-
rized in another review article (Fraden 1995). While theory and experiment
are in agreement for the isotropic—cholesteric phase transition for suspen-
sions with high salt concentrations used to screen long-range electrostatic
repulsion, theoretical explanations of all other phases fail. We see a quantita-
tive discrepancy between theory and experiment for the nematic phase at low
ionic strength, and multiple quantitative and qualitative breakdowns of the



1.2 Entropy-Driven Ordering Within the Second Virial Approximation

theory of the smectic phase. Also, we have not even a clue of why a cholesteric
phase is observed in fd, but a nematic in a closely related species, pf1, which
has a nearly identical atomic structure (Grelet and Fraden 2003). Second, we
present results on mixtures of the viral rods with spherical colloids or spher-
ical polymers. Some of the phase behavior, such as depletion-induced phase
separation, was as anticipated. But an astounding array of unexpected results
was also observed. A laundry list includes microphase separation of rods and
spheres into columnar, cubic, and lamellar structure; isolated colloidal mem-
branes consisting of a sheet of rods and stabilized via protrusion forces; and
a quasi-two-dimensional smectic phase that exists on the isotropic-nematic
interface that plays a key role in phase separation kinetics. While originally we
were motivated to study virus suspensions because they are model systems
of simple fluids, now we are motivated by a spirit of exploration driven by
the expectation that more unexpected results will follow the ones described
below.

1.2
Entropy-Driven Ordering Within the Second Virial Approximation

In the first part of this chapter we briefly review the theoretical work describing
liquid-crystalline phase transitions in colloidal rods. This is not meant to be
exhaustive. For more detailed theoretical accounts, the reader is referred to
recent review articles (Stephen and Straley 1974; Odijk 1986; Vroege and
Lekkerkerker 1992) and the original article by Onsager (1949).

The majority of studies of the ordering transitions in hard-particle fluids
belong to a class of theories called density-functional theories (DFTs) (Hansen
and McDonald 1986). The simplest version of DFT takes into account the
interactions between particles at the level of second virial approximation. The
free energy of a hard-particle fluid is then

k:BiT = /v dr p(r) In[p(r)] — %/V dry /Vdrg p(ri)p(ra)B(ri,re)  (1.1)

where kp is the Boltzmann constant, 7' is the absolute temperature, p(r)
denotes the density of particles, 7, and r; are vectors denoting the position
and/or orientation of two particular particles, and 3(ry,rs) is the Meyer—
Meyer overlap function. Its value equals —1 if there is any overlap between
two hard particles located at 7, and ry; otherwise its value is equal to zero.
This expression has been used for a variety of cases to study entropy-induced
ordering in hard-particle fluids. Onsager (1949) was the first to show that
Eq. (1.1) is essentially exact for isotropic spherocylinders when L/ Dy. — o0,
where L is the length and D, is the diameter of the spherocylinder. As
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the aspect ratio of spherocylinders is increased, the third and higher virial
coefficients become negligible.

The second virial theory also predicts a stable smectic phase in a solution
of perfectly aligned spherocylinders as well as for spherocylinders with both
positional and orientational degrees of freedom (Hosino et al. 1979; Mulder
1987; van Roij et al. 1995; van der Schoot 1996). However, to describe the sus-
pensions quantitatively at the densities of the nematic—smectic (N-S) phase
transition, itis necessary to include higher virial coefficients in the free-energy
expression. For perfectly aligned spherocylinders, inclusion of the third and
fourth virial coefficients into the free energy results in theoretical predictions
for the N-S transitions that are in quantitative agreement with simulation
results. The calculations that consider ordering transitions using only second
virial coefficients are uncontrolled approximations, unless it can be shown
that higher virial coefficients are negligible, as is the case of the Onsager
treatment of the I-N phase transition.

In any hard-particle fluid, due to the simplicity of the interaction potential,
the energy of any allowed configuration is simply proportional to nkgT’, with n
being the number density of particles. Due to this simple fact, the minimum
of the free energy of a hard-particle fluid F = F — ST = T(a — S) (a is
a constant) is equivalent to the maximum of the entropy. Furthermore, the
resulting phase diagram is temperature-independent (athermal) because both
«and S are independent of temperature. Ordering transitions in hard-particle
fluids are still possible because the expression for entropy, or equivalently
free energy, splits into two parts. The first integral in Eq. (1.1) is the ideal
part of the free energy and always attains a minimum value for the uniform
probability distribution p(r) = constant. Therefore, this contribution to the
total free energy always suppresses an ordering transition. The second integral
in Eq. (1.1) represents the second virial approximation for the interaction
free energy, which is proportional to the excluded volume, and under certain
circumstances is lower for an ordered state. Therefore, the interaction part of
the free energy drives the system toward ordering. The actual location of the
ordering transition is determined from the competition between the ideal and
interaction contributions to the total free energy. In this section, we briefly
review the theoretical description of phase transitions that can be described
using Eq. (1.1) for pure hard rods.

1.2.1
Isotropic—Nematic Phase Transition Within the Second Virial Approximation

The density functional of the sort shown in Eq. (1.1) was first used in a seminal
paper by Onsager (1949). He was seeking to explain the formation of the
nematic phase in solutions of rod-like tobacco mosaic virus (TMV), inorganic



