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Introduction

Purpose This book is an introduction to some of the basic concepts of
topology, especially of non-Hausdorff topology. I will of course explain what
it means (Definition 4.1.12). The important point is that traditional topology
textbooks assume the Hausdorff separation condition from the very start, and
contain very little information on non-Hausdorff spaces. But the latter are
important already in algebraic geometry, and crucial in fields such as domain
theory.

Conversely, domain theory (Abramsky and Jung, 1994; Gierz et al., 2003),
which arose from logic and computer science, started as an outgrowth of the-
ories of order. Progress in this domain rapidly required a lot of material on
(non-Hausdorff) topologies.

After about 40 years of domain theory, one is forced to recognize that
topology and domain theory have been beneficial to each other. I've already
mentioned what domain theory owes to topology. Conversely, in several
respects, domain theory, in a broad sense, is topology done right.

This book is an introduction to both fields, dealt with as one. This seems
to fill a gap in the literature, while bringing them forth in a refreshing
perspective.

Secondary purpose This book is self-contained. My main interest, though, as
an author, was to produce a unique reference for the kind of results in topology
and domain theory that I needed in research [ started in 2004, on semantic
models of mixed non-deterministic and probabilistic choice. The goal quickly
grew out of proportion, and will therefore occupy several volumes. The current
book can be seen as the preliminaries for other books on these other topics.
Some colleagues of mine, starting with Professor Alain Finkel, have stressed
that these preliminaries are worthy of interest, independently of any specific
application.
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Teaching This book is meant to be used as a reference. My hope is that it
should be useful to researchers and to people who are curious to read about a
modern view of point-set topology. It did not arise as lecture notes, and [ don’t
think it can be used as such directly. If you plan on using this book as a basis
for lectures, you should extract a few selected topics. Think of yourself as a
script writer and this book as a novel, and pretend that your job is to produce a
shorter script for a feature-length movie, and skip the less important subplots.

Exercises There are many exercises, spread over the whole text. Some of them
are meant for training, i.c., to help you understand notions better, to make you
more comfortable with definitions and theorems that we have just seen. Some
others are there to help you understand notions in a deeper way, or to go further.
This is traditional in mathematical textbooks. It is therefore profitable to read
all exercises: those of the second kind in particular state additional theorems,
which you can prove for yourself (sometimes with the help of hints), but do not
need to. It will happen that not only solutions of exercises but also some proofs
of theorems will depend on results we shall have seen in previous exercises.
There is no pressure on you to actually do any exercise, and you can decide to
take them as a mere source of additional information.

What is not covered Topology is an extremely rich topic, and I could not
cover all subtopics in a book of reasonable size. (Notwithstanding the fact that
[ certainly do not know everything in topology.) I decided to make a selection
among those subtopics that pleased me most. Some other topics were neces-
sarily left out, despite them being equally interesting. For example, algebraic
topology will not be touched upon at all. Uniform and quasi-uniform spaces,
bitopological spaces, Lindelof spaces, Souslin spaces, and topological group
theory were left out as well. Topological convexity, topological measure theory,
hyperspaces, and powerdomains will be treated in further volumes.

Dependencies Reading 1 < v as “v depends on u,” the structure of the book
is as follows. Dashed arrows mark weaker dependencies.
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2

Elements of set theory

We recapitulate the axiomatic foundations on which this book is based in
Section 2.1. We then recall a few points about finiteness and countability in
Section 2.2 and some basics of order theory in Section 2.3, and discuss the
Axiom of Choice and some of its consequences in Section 2.4. These points
will be needed often in the rest of this book. If you prefer to read about
topology right away, and feel confident enough, please proceed directly to
Chapter 3.

2.1 Foundations

We shall rest on ordinary set theory. While the latter has been synonymous with
Zermelo—Fraenkel (ZF) set theory with the Axiom of Choice (ZFC) for some
time, we shall use von Neumann—-Godel-Bernays (VBG) set theory instead
(Mendelson, 1997).

There is not much difference between these theories: VBG is a conserva-
tive extension of ZFC. That VBG is an extension means that any theorem of
ZFC is also a theorem of VBG. That it is conservative means that any the-
orem of VBG that one can express in the language of ZFC is also provable
in ZFC.

The main difference between VBG and ZFC is that the former allows one to
talk about collections that are too big to be sets. This is required, in all rigor,
in the definition of (big) graphs and categories of Section 4.12. VBG allows us
to talk about, say, the collection V of all sets, although V cannot itself be a set.
This is the essence of Russell’s paradox: assume there were a set V of all sets.
Then A = {x € V | x & x} is a set. The rather mind-boggling argument is
that, first, A ¢ A since if A were in A, then A would be an x such that x ¢ x
by definition of A. Since A ¢ A, A is an x such that x ¢ A, so Aisin A, a
contradiction.
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VBG avoids this pitfall by not recognizing V as a set, but as something of a
different nature called a collection (or a class). Here is an informal description
of the axioms of VBG set theory.

VBG set theory is a theory of collections. The formulae of VBG are those
obtained using the language of first-order logic, i.e., using true (T), false (L),
logical and (A), or (v), negation (—), implication (=), equivalence (<), and
universal (V) and existential (3) quantification, on a language whose predicate
symbols are € (“belongs to,” “is in,” “is an element of™), = (equality), and m
(“being small”). The small collections, i.e., the collections A such that m(A)
holds, are called sets. Collections must obey the following axioms:

o (Elements are small) Any element of a collection is small: Vx, A-x € A =
m(x).

¢ (Extensionality) Any two collections with the same elements are equal:
YVA,B-(VYx-xe Ao xeB)= A=B8.

e (Comprehension) Say that a formula F is a set formula iff all the quantifica-
tions in F are over sets, not collections. That is, the syntax of set formulae
sSF,G,...:=T | L|imx)|lxey|lx=y|FAG|FvG]|—F|
F=G|F&G|Vx -m(x)= F|3x -m(x)A F. The comprehension
schema states that, for each set formula F(x, ¥) (where we make explicit
the set of collections variables x, y = yi, ..., yn that it may depend on),
there is a collection {x | F(x, y)} of all elements x such that F(x, ¥) holds:
Vy-3A -Vx-x € A & F(x,y).

o (Empty set) the empty collection @ = {x | L} is aset: m(D).

o (Pairing) Given any two sets x, y, their pair {x.v} ={z | z=xVz =y}
is a set: m({x, y}). The ordered pair (x, y) is encoded as {{x, x}, {x, y}}. It
follows that {x} = {x, x} is a set as well.

¢ (Union) Given any set x, the collection | Jx = {J,., y = {z | 3y-m(y)Ay €
x}isasetie. m({z | Iy-m(y) Ay € x}). We write x U y for | J{x. v}.

e (Powerset) Given any set x, the collection P(x) of all subsets of x is a set,
ie.,m({z | z € x}),where we write z C x forVy-m(y) = (y € 2 = y€x),
or equivalently Vy - y € z = y € x. For every set A, P(A) is called the
powerset of A.

e (Infinity) Let 0 = @, x + 1 = x U {x}. There is a collection N containing 0
and such that x € N implies x + | € N. One may even define the smallest
such collection, N, as {x | VN -m(N) = (0e NA(Vz-m(z) = (ze€ N =
7+ 1€ N)) = x € N)}. The axiom of infinity states that N is small: m (N).
N is the set of natural numbers {0, 1,2, ...}.
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e (Foundation) There is no infinite chain --- € x; € .-+ € x2 € x;. This
is usually formulated in the more cryptic, but equivalent form: Every non-
empty class is disjoint from one of its elements. One may as well axiomatize
this by an induction axiom, stating that we may induct along the relation €:
VA-(Vx-mx)A(Vy-yex=yeA) =>xeA) = Vx-mx)=>x €A,
i.e., any class A that contains every set x whenever it contains all smaller
sets (i.e., all sets y such that y € x) must in fact contain all sets.

e (Replacement) The image of a set under a function is a set. Functions f are
encoded as their graphs, i.e., as the class of all pairs (x, f(x)): so a function
is any class f such that Vx,y,z-(x,v) € fA(x,2) € f = vy =2
Replacement states that, for every function f and every set A, its image
fIAl={y | 3x-mx)Ax € AA(x,y) € f}issmall

e (Axiom of Choice) Given any function f, call the domain of f the set of
clements x such that f(x) is defined, i.e., the set of elements x such that,
for some y (= f(x)), (x,y) isin f. The Axiom of Choice states that, for
every function F such that, for every x in its domain, F(x) is a non-empty
set, there is a function f whose domain is the same as F, and such that
f(x) € F(x) for every x in the domain of F. In other words, f singles out
one element f(x) from each set F(x). We discuss this axiom in Section 2.4.

We use standard abbreviations throughout; e.g., a set A intersects, or meets,
aset B if and only if A N B is non-empty, i.e., if and only if AN B # @.

2.2 Finiteness, countability

A set A is finite iff one can write it {x|,...,x,} for some n € N. We can
assume that xy, ..., . v, are pairwise distinct. A formal definition may be: A is
finite iff there is a bijection from A to some subset of the form | n = {m € N |
m < n},neN.

A set is infinite iff it is not finite.

A set A is countable iff there is a bijection from A and some (arbitrary)
subset of N, It is equivalent to say that A is finite or countably infinite, where
A is countably infinite iff there is a bijection from A to the whole of N.

Every non-empty countable set A can be written {x; | i € N}, i.e., there is a
surjective map i — x; from N to A. (This is not true if A is empty.)

Every subset of a finite set is finite, and similarly every subset of a countable
set is countable. In particular, any non-empty intersection of countable sets is
countable.

We observe that N x N is countable. One possible bijection m, n +— "m,n’'
is defined as follows. We can write any natural number in base 2, as an infinite
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word . ..aja;_y ...aza,ap, where each a; is in {0, 1}, and all but finitely many
equal 0: this word represents the natural number Y75 a;2". Now, when m is
written in base 2 as ...a;a;_| ...axajap and n as ... bib;_y ...babyby, define
"m,n'=...ajbjai_1bi_\ ...axbya1byapby.

It follows that the product Ax B = {(x,y) | x € A, y € B}oftwo countable
sets is countable.

Every countable union of countable sets is countable; i.e., (for non-empty
sets) if Ay is the countable set {x;; | i € N} for each k € N, then UkeN Aj is
the set {xg; | "k, " € N}, which is countable.

We deduce that the set Z of all integers, negative, zero, or positive, is
countable: indeed Z is in bijection with the union of N with {—n — 1 | n € N}.

It also follows that the set Q of rational numbers is countable. Indeed, con-
sider the set A of pairs (m, n) € Z x N such that m and n + 1 have no common
divisor other than 1. A is countable, as a subset of the countable set Z x N, and
there is a bijection from A to Q. which sends (m, n) to 55

The finite powerset Pan(A) of a set A is the set of all finite subsets of
A. When A is countable, Ps,(A) is countable, too. This is obvious when
A is empty; otherwise it is enough to show that Pg,(N) is countable: the
required bijection E € Pun(N) — "E7 € N can be defined, for example,
by TET = Y, 2" its inverse maps every number m written in base 2 as
...ajaj_1 ...axapap to the finite set of all indices i such thata; = 1.

However, the powerset P(A) of all subsets of A is not countable in general,
even when A is countable. To wit, P(N) is not countable. This would indeed
imply the existence of a surjective map from N to IP(N), contradicting Cantor’s
Theorem:

Theorem 2.2.1 (Cantor) For any set A, there is no surjective map from A to
P(A).

Proof Assume there was one, say f. Let B = {x € A | x € f(x)}. Since
f 1s surjective, there is an x € A such that B = f(x). If x € B, ie., if
x € f(x), by definition x is not in B: contradiction. So x is not in B. This
implies that x € f(x) since B = f(x),so x € B by definition of B, again a
contradiction. O

We call uncountable any set that is not countable.

The set {0, 1} of all infinite words on the alphabet {0, 1} is not countable
either. An infinite word on an alphabet X is just a sequence of letters in X, i.e.,
amap from N to . The map sending w € {0, [}” totheset{i e N | w(i) = 1}
is a bijection between {0, 1}* and P(N), so {0, 1}* cannot be countable.
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It follows that the interval [0, 1] of R is not countable either. Indeed, define
the following function: for each x € [0, 1), write x in base 3 as ZZ:B ay /3*+1;
if every ay is in {0, 2}, then map x to the infinite word @4 ... & . ; otherwise
map x to an arbitrary word; finally, map 1 to the all one word 11...1... This
is clearly surjective. If [0, 1] were countable, there would also be a surjection
from N to [0, 1], which, composed with the above surjection, would yield a
surjection from N to P(N), contradicting Cantor’s Theorem.

From this, we deduce that R itself is not countable either. In fact, no subset A
of R that contains a non-empty interval [a —€, a+€], € > 0, can be countable.
Indeed, this interval is in bijection with [0, 1], by themap ¢ +— (r —a+-€)/(2¢).

2.3 Order theory

2.3.1 Orderings, quasi-orderings

A binary relation R on X is any subset of X x X. We write x R y instead of
(x,y) € R. Ris reflexive ift x R x forevery x € X. R is transitive iff whenever
x Ryandy Rz, thenx R z. A reflexive and transitive relation is called a quasi-
ordering, and is usually written <. A guasi-ordered set is any set equipped with
a quasi-ordering. When x < y, we say that x is below y, or that y is above x.

R is antisymmetric ift whenever x Ry and y R x, then x = y. A partial
ordering, or ordering for short, on X is any antisymmetric quasi-ordering on
X. A set with an ordering is called a partially ordered set or a poset.

A binary relation R is symmetric iff whenever x R y, then y R x. An equiv-
alence relation is any reflexive, symmetric, and transitive relation. We shall
usually write = for equivalence relations. The equivalence class g=(x) of
x € X is the set of all y € X such that x = y. The quotient X /= is the
set of all equivalence classes of X.

Given any quasi-ordering < on X, we can define an equivalence relation
=byx = yiff x < yand y < x. If < is an ordering, then = is just the
equality relation =. Otherwise, define g=(x) < g=(y) iff x < y, and observe
that this is well defined, i.e., it does not depend on the exact elements x and y
that one picks from the equivalence classes g=(x) and g=(y). Then < is not
just a quasi-ordering, but is an ordering on X /=. So, up to quotients, there is
not much difference between quasi-ordered sets and posets.

We also write < for the strict part of the quasi-ordering <, viz., x < y iff
x<yandx # y,iff x < yand y £ x.

Write y > x iff x < y, and call > the opposirte of <. For every poset X, the
set of all elements of X ordered by = is the opposite of X, and is written X 7.
We write > for the strict part of >.
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In any quasi-ordered set X, we say that a subset A is upward closed iff
whenever x € A and x < y, then y € A: going up from an element of A, we
stay in A. The upward closure 1ty Aof Ain X istheset{y € X [Ix € A-x <
v} of all elements above some element of A. For short, we write 1 A when X
is clear from context, and 1 x for t{x} when x € X. Note that A is upward
closed iff A = 1 A. Conversely, we say that A is downward closed iff every
element below some element of A is again in A. The downward closure | x A,
or | A when X is clear, equals {y € X | 3x € A -y < x}. For short, we shall
write | x for [{x} when x € X.

2.3.2 Upper bounds, lower bounds

For any subset A of a poset X, we say that x € A is a least element of A iff
A C 7tu,ie., every element of A is above x. The least element, if it exists,
is unique. This should not be confused with the notion of minimal element:
x € A is minimal in A iff no element of A is strictly below x, i.e., iff whenever
y <xand y € A, then y = x. The least element of A, if it exists, is minimal,
but minimal elements may fail to be least. For example, in N x N with the
product ordering, defined by (m,n) < (m’,n") ifft m < m’ and n < n’, the
set 1{(1,2), (3, 1)} has two minimal elements, (1, 2) and (3, 1), but no least
element.

The greatest element and the notion of maximal elements are defined
similarly, using > instead of <.

An upper bound x of a subset A of a poset X is an element such that y < x
for every y € A. That is, an upper bound of A sits above every element of A.
In R x R, for example, (3, 1), (5,5), and (6, 1) are some of the upper bounds
of theset {(x,y) e RxR|[x <3,y < 1}.

The least upper bound of a subset A of a poset X, if it exists, is the least
element of the set of all upper bounds of A in X. For short, we shall also call
it the supremum of A, and write it sup A. For example, the subset {(x, v) €
RxR|x <3 y<l}of RxRadmits (3, 1) as least upper bound. When A
is a family (x;);c;, we also write sup;; x; instead of sup A.

If sup A exists and is in A, then sup A is necessarily the greatest element of
A. But sup A may fail to be in A, as in the example just given.

The notions of lower bound, greatest lower bound, a.k.a. infimum inf A of a
subset A of X, are defined similarly, replacing < by its opposite >.

A complete lattice is a poset X such that every subset A of X has a least
upper bound sup A and a greatest lower bound inf A. It is equivalent to require
the existence of least upper bounds only, since then the greatest lower bounds
inf A exist as well, as least upper bounds of the set of lower bounds of A.
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Similarly, any poset in which every subset has a greatest lower bound is also a
complete lattice.

Every complete lattice has a least element L (also called bottom), obtained
as the least upper bound sup @ of the empty family, and a greatest element T
(also called rop), obtained as inf @.

For any set X, P(X) with the inclusion ordering C is a complete lattice: the
least upper bound of a family of subsets of X is their union, and the greatest
lower bound is their intersection.

There are various weaker notions. For example, an inf-semi-lattice is a poset
in which any two elements x, y have a greatest lower bound x A y, and therefore
any non-empty finite set of elements has a greatest lower bound. Symmetri-
cally, a sup-semi-lattice is a poset in which any two elements x, y have a least
upper bound x Vv y, and therefore any non-empty finite set of elements has a
least upper bound.

We do not require inf-semi-lattices to have greatest lower bounds of all finite
subsets, only the non-empty ones. That is, we do not require them to have a
largest element T. Similarly, we do not require sup-semi-lattices to have a least
element L. Those that have one have least upper bounds of all finite subsets,
and are called pointed.

A lattice is any poset that is both an inf-semi-lattice and a sup-semi-lattice.
Those lattices that have a least element L and a largest element T are called
bounded.

2.3.3 Fixed point theorems

A map f from a poset X to a quasi-ordered set Y is monotonic iff, for every
x,x" € X withx <x', f(x) < f(x'). When X is a poset, an order embedding
f: X — Y is a monotonic map such that, additionally, whenever f(x) <
f(x), then x < x’. In particular, every order embedding is injective, but there
are injective monotonic maps that are not order embeddings, e.g., the identity
map from {0, 1} with equality as ordering to {0, 1} with the ordering 0 < 1. An
order isomorphism f: X — Y is a bijective, monotonic map, whose inverse
is also monotonic. Every order isomorphism is an order embedding, and every
order embedding f: X — Y defines an order isomorphism from X to the
image of X by f in Y, with the ordering induced by that of Y.

Two elements x and y of a quasi-ordered set X are incomparable iff x £ vy
and y £ x. For example, (5,5) and (6, 1) are incomparable in R x R.

A subset A of a poset X is totally ordered iff it has no pair of incomparable
elements, i.e., iff, for every pair of elements x, y of A, x < yory < x. The
ordering < itself is called total, or linear, iff X is totally ordered by <. A chain
in X is any totally ordered, non-empty subset of X.



