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Preface

Topology is a major area of mathematics concerned with
properties that are preserved undercontinuous deformations of
objects, such as deformations that involve stretching, but no tearing
or gluing, although the notion of stretching employed in
mathematics is not quite the everyday notion: see below and the
definition of homeomorphism for details of the mathematical
notion. Topology emerged through the development of concepts
from geometry and set theory, such as space, dimension, and
transformation. Ideas that are now classified as topological were
expressed as early as 1736. Toward the end of the 19th century,
a distinct discipline developed, which was referred to in Latin as
the geometria situs (“geometry of place”) or analysis situs (Greek-
Latin for “picking apart of place”). This later acquired the modern
name of topology. By the middle of the 20th century, topology had
become an important area of study within mathematics. The
word topology is used both for the mathematical discipline and for
a family of sets with certain properties that are used to define
a topological space, a basic object of topology. Of particular
importance are homeomorphisms, which can be defined
as continuous functions with a continuousinverse. Topology
includes many subfields. The most basic and traditional division
within topology is point-set topology, which establishes the
foundational aspects of topology and investigates concepts inherent
to topological spaces (basic examples include compactness and
connectedness); algebraic topology, which generally tries to
measure degrees of connectivity using algebraic constructs such
as homotopy groups and homology; and geometric topology,
which primarily studies manifolds and their embeddings
(placements) in other manifolds. Some of the most active areas,
such as low dimensional topology and graph theory, do not fit
neatly in this division. Knot theory studies mathematical knots.

Topology began with the investigation of certain questions in
geometry. Leonhard Euler’s 1736 paper on the Seven Bridges of
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Konigsberg is regarded as one of the first academic treatises in
modern topology. The term “Topologie” was introduced in German
in 1847 by Johann Benedict Listing in Vorstudien zur Topologie, who
had used the word for ten years in correspondence before its first
appearance in print. “Topology,” its English form, was first used
in 1883 in Listing’s obituary in the journal Nature to distinguish
“qualitative geometry from the ordinary geometry in which
quantitative relations chiefly are treated”. The term topologist in
the sense of a specialist in topology was used in 1905 in the
magazine Spectator. However, none of these uses corresponds
exactly to the modern definition of topology. Modern topology
depends strongly on the ideas of set theory, developed by Georg
Cantor in the later part of the 19th century. Cantor, in addition to
establishing the basic ideas of set theory, considered point sets
in Euclidean space as part of his study of Fourier series. Henri
Poincaré published Analysis Situs in 1895, introducing the concepts
of homotopy and homology, which are now considered part
of algebraic topology. Maurice Fréchet, unifying the work on
function spaces of Cantor, Volterra, Arzela, Hadamard, Ascoli, and
others, introduced the metric space in 1906. A metric space is now
considered a special case of a general topological space. In
1914, Felix Hausdorff coined the term “topological space” and
gave the definition for what is now called a Hausdorff space. In
current usage, a topological space is a slight generalization of
Hausdorff spaces, given in 1922 by Kazimierz Kuratowski.

The texts are arranged in a lucid form and written in colloquial
English. All the essential aspects of this subject have been included.

Hopefully, the present study will prove very useful for students
and teachers.

— Editor
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Introduction

Topology, as a branch of mathematics, can be formally defined
as “the study of qualitative properties of certain objects (called
topological spaces) that are invariant under a certain kind of
transformation (called a continuous map), especially those
properties that are invariant under a certain kind of equivalence
(called homeomorphism).” To put it more simply, topology is the
study of continuity and connectivity.

The term topology is also used to refer to a structure imposed
upon a set X, a structure that essentially ‘characterizes’ the set X
as a topological space by taking proper care of properties such as
convergence, connectedness and continuity, upon transformation.

Topological spaces show up naturally in almost every branch
of mathematics. This has made topology one of the great unifying
ideas of mathematics. The motivating insight behind topology is
that some geometric problems depend not on the exact shape of
the objects involved, but rather on the way they are put together.
For example, the square and the circle have many properties in
common: they are both one dimensional objects (from a topological
point of view) and both separate the plane into two parts, the part
inside and the part outside.

One of the first papers in topology was the demonstration, by
Leonhard Euler, that it was impossible to find a route through the
town of Konigsberg (now Kaliningrad) that would cross each of
its seven bridges exactly once. This result did not depend on the
lengths of the bridges, nor on their distance from one another, but
only on connectivity properties: which bridges are connected to
which islands or riverbanks. This problem, the Seven Bridges of
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Konigsberg, isnow a famous problem in introductory mathematics,
and led to the branch of mathematics known as graph theory.

Similarly, the hairy ball theorem of algebraic topology says
that “one cannot comb the hair flat on a hairy ball without creating
a cowlick.” This fact is immediately convincing to most people,
even though they might not recognize the more formal statement
of the theorem, that there is no nonvanishing continuous tangent
vector field on the sphere. As with the Bridges of Konigsberg, the
result does not depend on the exact shape of the sphere; itapplies
to pear shapes and in fact any kind of smooth blob, as long as it
has no holes.

To deal with these problems that do not rely on the exact
shape of the objects, one must be clear about just what properties
these problems do rely on. From this need arises the notion of
homeomorphism. The impossibility of crossing each bridge just
once applies to any arrangement of bridges homeomorphic to
those in Konigsberg, and the hairy ball theorem applies to any
space homeomorphic to a sphere.

Intuitively two spaces are homeomorphic if one can be
deformed into the other without cutting or gluing. A traditional
joke is that a topologist can’t distinguish a coffee mug from a
doughnut, since a sufficiently pliable doughnut could be reshaped
to the form of a coffee cup by creating a dimple and progressively
enlarging it, while shrinking the hole into a handle. A precise
definition of homeomorphic, involving a continuous function with
a continuous inverse, is necessarily more technical.

Homeomorphism can be considered the most basic fopological
equivalence. Another is homotopy equivalence. This is harder to
describe without getting technical, but the essential notion is that
two objects are homotopy equivalent if they both result from
“squishing” some larger object.

An introductory exercise is to classify the uppercase letters of
the English alphabet according to homeomorphism and homotopy
equivalence. The result depends partially on the font used. The
figures use a sans-serif font named Myriad. Notice that homotopy
equivalence is a rougher relationship than homeomorphism; a
homotopy equivalence class can contain several of the
homeomorphism classes. The simple case of homotopy equivalence
described above can be used here to show two letters are homotopy



Introduction 3

equivalent. For example, O fits inside P and the tail of the P can
be squished to the “hole” part. Thus, the homeomorphism classes
are: one hole two tails, two holes no tail, no holes, one hole no
tail, no holes three tails, a bar with four tails (the “bar” on the K
is almost too short to see), one hole one tail, and no holes four
tails.

The homotopy classes are larger, because the tails can be
squished down to a point. The homotopy classes are: one hole,
two holes, and no holes. To be sure we have classified the letters
correctly, we not only need to show that two letters in the same
class are equivalent, but that two letters in different classes are not
equivalent. In the case of homeomorphism, this can be done by
suitably selecting points and showing their removal disconnects
the letters differently. For example, X and Y are not homeomorphic
because removing the centre point of the X leaves four pieces;
whatever point in Y corresponds to this point, its removal can
leave at most three pieces. The case of homotopy equivalence is
harder and requires a more elaborate argument showing an
algebraic invariant, such as the fundamental group, is different on
the supposedly differing classes.

Letter topology has some practical relevance in stencil
typography. The font Braggadocio, for instance, has stencils that
are made of one connected piece of material.

Mathematical Definition

Let X be a set and let 7be a family of subsets of X. Then 7
is called a topology on X if:

1. Both the empty set and X are elements of 7
2. Any union of elements of 7is an element of 7

3. Any intersection of finitely many elements of t is an element
of «

If 7is a topology on X, then the pair (X, 7) is called a topological
space. The notation X _may be used to denote a set X endowed with
the particular topology .

The members of 7 are called open sets in X. A subset of X is
said to be closed if its complement is in 7 (i.e., its complement is
open). A subset of X may be open, closed, both (clopen set), or
neither. The empty set and X itself are always clopen.
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A function or map from one topological space to another is
called continuous if the inverse image of any open set is open. If
the function maps the real numbers to the real numbers (both
spaces with the Standard Topology), then this definition of
continuous is equivalent to the definition of continuous in calculus.
If a continuous function is one-to-one and onto, and if the inverse
of the function is also continuous, then the function is called a
homeomorphism and the domain of the function is said to be
homeomorphic to the range. Another way of saying this is that
the function has a natural extension to the topology. If two spaces
are homeomorphic, they have identical topological properties,
and are considered topologically the same. The cube and the
sphere are homeomorphic, as are the coffee cup and the doughnut.
But the circle is not homeomorphic to the doughnut.

Topology Topics

Some Theorems in General Topology

* Every closed interval in R of finite length is compact.
More is true: In R”, a set is compact if and only if it is
closed and bounded.

e Every continuous image of a compact space is compact.

e Tychonoft’s theorem: the (arbitrary) product of compact
spaces is compact.

* A compact subspace of a Hausdorff space is closed.

* Every continuous bijection from a compact space to a
Hausdorff space is necessarily a homeomorphism.

e Every sequence of points in a compact metric space has
a convergent subsequence.

e Every interval in R is connected.

* Every compact finite-dimensional manifold can be
embedded in some Euclidean space R".

* The continuous image of a connected space is connected.

¢ Every metric space is paracompact and Hausdorff, and
thus normal.

¢ The metrization theorems provide necessary and sufficient
conditions for a topology to come from a metric.

¢ The Tietze extension theorem: In a normal space, every
continuous real-valued function defined on a closed
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subspace can be extended to a continuous map defined
on the whole space.

* Any open subspace of a Baire space is itself a Baire space.

* The Baire category theorem: If X is a complete metric
space or a locally compact Hausdorff space, then the
interior of every union of countably many nowhere dense
sets is empty.

* On a paracompact Hausdorff space every open cover
admits a partition of unity subordinate to the cover.

¢ Every path-connected, locally path-connected and semi-
locally simply connected space has a universal cover.

General topology also has some surprising connections to
other areas of mathematics. For example:

* Innumber theory, Fiirstenberg's proof of the infinitude of
primes.

Some useful notions from algebraic topology

* Homology and cohomology: Betti numbers, Euler
characteristic, degree of a continuous mapping.

* Operations: cup product, Massey product

* [ntuitively attractive applications: Brouwer fixed-point
theorem, Hairy ball theorem, Borsuk-Ulam theorem, Ham
sandwich theorem.

* Homotopy groups (including the fundamental group).
* Chern classes, Stiefel-Whitney classes, Pontryagin classes.

Generalizations

Occasionally, one needs to use the tools of topology but a “set
of points” is not available. In pointless topology one considers
instead the lattice of open sets as the basic notion of the theory,
while Grothendieck topologies are certain structures defined on
arbitrary categories that allow the definition of sheaves on those
categories, and with that the definition of quite general cohomology
theories.

Simplex

In geometry, a simplex (plural simplexes or simplices) is a
generalization of the notion of a triangle or tetrahedron to arbitrary
dimension. Specifically, an n-simplex is an n-dimensional polytope
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which is the convex hull of its n + 1 vertices. For example, a 2-
simplex is a triangle, a 3-simplex is a tetrahedron, and a 4-simplex
is a pentachoron.

A single point may be considered a 0-simplex, and a line
segment may be considered a 1-simplex. A simplex may be defined
as the smallest convex set containing the given vertices.

Figure: A regular 3-simplex or tetrahedron

A regular simplex is a simplex that is also a regular polytope.
A regular n-simplex may be constructed from a regular (1 - 1)-
simplex by connecting a new vertex to all original vertices by the
common edge length. In topology and combinatorics, it is common
to “glue together” simplices to form a simplicial complex.

The associated combinatorial structure is called an abstract
simplicial complex, in which context the word “simplex” simply
means any finite set of vertices.

The Standard Simplex
The standard n-simplex (or unit -simplex) is the subset of R
given by

A" :{(t(,.---,t”)e R™ X"t =1and ¢, >0 for all i}

=0

The simplex A" lies in the affine hyperplane obtained by
removing the restriction t, 2 0 in the above definition. The standard
simplex is clearly regular.
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Figure: The Standard 2-simplex in R’

The n+1 vertices of the standard n-simplex are the points ¢, -
R™!, where

e,=(1,0,0,..0),

e,=(0,1,0,..,0),

e =(0,0,0, .., 1).
There is a canonical map from the standard n-simplex to an
arbitrary n-simplex with vertices (v, ..., v) given by
(1y,-=-51,) Zf:()tivi
The coefficients ¢, are called the barycentric coordinates of a
point in the n-simplex. Such a general simplex is often called an
affine n-simplex, to emphasize that the canonical map is an affine

transformation. It is also sometimes called an oriented affine n-
simplex to emphasize that the canonical map may be orientation

preserving or reversing.

More generally, there is a canonical map from the standard
(n—1)-simplex (with n vertices) onto any polytope with n vertices,
given by the same equation (modifying indexing):

(t,---.t,)> Xty

="
These are known as generalized barycentric coordinates, and
express every polytope as the image of a simplex: A" _;, P,
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Increasing Coordinates

An alternative coordinate system is given by taking the
indefinite sum:

s, =0

S =5, t1, =1,

S, =8+, =1, +{

A =8+, =+, +1,

A =S, tt, =L +L+...+,
S, =S, +t, =t +t+...+t =1

This yields the alternative presentation by order, namely as
nondecreasing n-tuples between 0 and 1:

h
Al ={(s,.---.s,,)€ R"[0=5,<s5<s,<...<5,<5,, =1}.

Geometrically, this is an 7-dimensional subset of [R” (maximal

dimension, codimension 0) rather than of [p”*! (codimension 1).
The hyperfaces, which on the standard simplex correspond to one

coordinate vanishing, f, =0, here correspond to successive

coordinates being equal, 5, =5, ,,, while the interior corresponds

i+l
to the inequalities becoming strict (increasing sequences).

Akey distinction between these presentations is the behaviour
under permuting coordinates — the standard simplex is stabilized
by permuting coordinates, while permuting elements of the
“ordered simplex” do not leave it invariant, as permuting an
ordered sequence generally makes it unordered.

Indeed, the ordered simplex is a (closed) fundamental domain
for the action of the symmetric group on the n-cube, meaning that
the orbit of the ordered simplex under the n! elements of the
symmetric group divides the n-cube into n! mostly disjoint
simplices (disjoint except for boundaries), showing that this simplex
has volume 1/ p! Alternatively, the volume can be computed by
an iterated integral, whose successive integrands are

Lx,x*/2,x>/3",....x" /n!



