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Yet here is no confusion: central-ruled

Divergent plungings, run through with a thread

Of pattern never snapping, cleave the tree

Into a dozen stubborn tusslings, yieldings,

That, balancing, bring the whole top alive.

Caught in the wind this night, the full-leaved boughs,
Tied to the trunk and governed by that tie,

Find and hold a center that can rule

With rhythm all the buffeting and flailing,

Till in the end complex resolves to simple.

from Tree in Night Wind

ABBIE HUSTON EVANS
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This book has grown out of a set of lecture notes I had prepared for
a course on Lie groups in 1966. When I lectured again on the subject in
1972, I revised the notes substantially. It is the revised version that is now
appearing in book form.

The theory of Lie groups plays a fundamental role in many areas of
mathematics. There are a number of books on the subject currently available
—most notably those of Chevalley, Jacobson, and Bourbaki—which present
various aspects of the theory in great depth. However, I feel there is a need
for a single book in English which develops both the algebraic and analytic
aspects of the theory and which goes into the representation theory of semi-
simple Lie groups and Lie algebras in detail. This book is an attempt to fill
this need. It is my hope that this book will introduce the aspiring graduate
student as well as the nonspecialist mathematician to the fundamental themes
of the subject.

I have made no attempt to discuss infinite-dimensional representations.
This is a very active field, and a proper treatment of it would require another
volume (if not more) of this size. However, the reader who wants to take
up this theory will find that this book prepares him reasonably well for that
task.

I have included a large number of exercises. Many of these provide the
reader opportunities to test his understanding. In addition I have made a
systematic attempt in these exercises to develop many aspects of the subject
that could not be treated in the text: homogeneous spaces and their coho-
mologies, structure of matrix groups, representations in polynomial rings,
and complexifications of real groups, to mention a few. In each case the
exercises are graded in-the form of a succession of (locally simple, I hope)
steps, with hints for many. Substantial parts of Chapters 2, 3 and 4, together
with a suitable selection from the exercises, could conceivably form the con-
tent of a one year graduate course on Lie groups. From the student’s point

vii



viii Preface

of view the prerequisites for such a course would be a one-semester course
on topological groups and one on differentiable manifolds.

The book begins with an introductory chapter on differentiable and
analytic manifolds. A Lie group is at the same time a group and a manifold,
and the theory of differentiable manifolds is the foundation on which the
subject should be built. It was not my intention to be exhaustive, but I have
made an effort to treat the main results of manifold theory that are used
subsequently, especially the construction of global solutions to involutive
systems of differential equations on a manifold. In taking this approach I
have followed Chevalley, whose Princeton book was the first to develop the
theory of Lie groups globally. My debt to Chevalley is great not only here
but throughout the book, and it will be visible to anyone who, like me,
learned the subject from his books.

The second chapter deals with the general theory. All the basic results
and concepts are discussed: Lie groups and their Lie algebras, the corre-
spondence between subgroups and subalgebras, the exponential map, the
Campbell-Hausdorff formula, the theorems known as the fundamental
theorems of Lie, and so on. ;

The third chapter is almost entirely on Lie algebras. The aim is to examine
the structure of a Lie algebra in detail. With the exception of the last part
of this chapter, where applications are made to the structure of Lie groups,
the action takes place over a field of characteristic zero. The main results
are the theorems of Lie and Engel on nilpotent and solvable algebras;
Cartan’s criterion for semisimplicity, namely that a Lie algebra is semisimple
if and only if its Cartan-Killing form is nonsingular; Weyl’s theorem assert-
ing that all finite-dimensional representations of a semisimple Lie algebra
are semisimple; and the theorems of Levi and Mal’¢ev on the semidirect
decompositions of an arbitrary Lie algebra into its radical and a (semisimple)
Levi factor. Although the results of Weyl and Levi-Mal’¢ev are cohomo-
logical in their nature (at least from the algebraic point of view), I have
resisted the temptation to discuss the general cohomology theory of Lie
algebras and have confined myself strictly to what is needed (ad hoc low-
dimensional cohomology).

The fourth and final chapter is the heart of the book and is a fairly com-
plete treatment of the fine structure and representation theory of semisimple
Lie algebras and Lie groups. The root structure and the classification of
simple Lie algebras over the field of complex numbers are obtained. As for
representation theory, it is examined from both the infinitesimal (Cartan,
Weyl, ‘Harish-Chandra, Chevalley) and the global (Weyl) points of view.
First I present the algebraic view, in which universal enveloping algebras.
left ideals, highest weights, and infinitesimal characters are put in the fore-
ground. I have followed here the treatment of Harish-Chandra given in his
early papers and used it to prove the bijective nature of the correspondence
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between connected Dynkin diagrams and simple Lie algebras over the com-
plexes. This algebraic part is then followed up with the transcendental theory.
Here compact Lie groups come to the fore. The existence and conjugacy of
their maximal tori are established, and Weyl's classic derivation of his great
character formula is given. It is my belief that this dual treatment of repre-
sentation theory is not only illuminating but even essential and that the
infinitesimal and global parts of the theory are complementary facets of a
very beautiful and complete picture.

In order not to interrupt the main flow of exposition, I have added an
appendix at the end of this chapter where I have discussed the basic results
of finite reflection groups and root systems. This appendix is essentially the
same as a set of unpublished notes of Professor Robert Steinberg on the
subject, and I am very grateful to him for allowing me to use his manuscript.

It only remains to thank all those without whose help this book would
have been impossible. I am especially grateful to Professor I. M. Singer for
his help at various critical stages. Mrs. Alice Hume typed the entire manu-
script, and I cannot describe my indebtedness to the great skill, tempered
with great patience, with which she carried out this task. I would like to
thank Joel Zeitlin, who helped me prepare the original 1966 notes; and
Mohsen Pazirandeh and Peter Trombi, who looked through the entire
manuscript and corrected many errors. I would also like to thank Ms. Judy
Burke, whose guidance was indispensable in preparing the manuscript for
publication.

I would like to end this on a personal note. My first introduction to
serious mathematics was from the papers of Harish-Chandra on semisimple
Lie groups, and almost everything I know of representation theory goes back
either to his papers or the discussions I have had with him over the past
years. My debt to him is too immense to be detailed.

V. S. VARADARAJAN
Pacific Palisades

PREFACE TO THE SPRINGER EDITION (1984)

Lie Groups, Lie Algebras, and Their Representations went out of print
recently. However, many of my friends told me that it is still very useful as a
textbook and that it would be good to have it available in print. So when
Springer offered to republish it, I agreed immediately and with enthusiasm.
I wish to express my deep gratitude to Springer-Verlag for their promptness
and generosity. I am also extremely grateful to Joop Kolk for providing me
with a comprehensive list of errata.
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CHAPTER 1

DIFFERENTIABLE AND ANALYTIC
MANIFOLDS

1.1. Differentiable Manifolds

We shall devote this chapter to a summary of those concepts and results
from the theory of differentiable and analytic manifolds which are needed
for our work in the rest of the book. Most of these results are standard and
adequately treated in many books (see for example Chevalley [1], Helgason
(1], Kobayashi and Nomizu [1], Bishop and Crittenden [1], Narasimhan [1]).

Differentiable structures. For technical reasons we shall permit our dif-
ferentiable manifolds to have more than one connected component. However,
all the manifolds that we shall encounter are assumed to satisfy the second
axiom of countability and to have the same dimension at all points. More
precisely, let M be a Hausdorff topological space satisfying the second axiom
of countability. By a (C~)differentiable structure on M we mean an assignment

D:U—»DWU) (U open, & M)
with the following properties:

(i) for each open U = M, D(U) is an algebra of complex-valued func-

tions on U containing | (the function identically equal to unity)

(ii) if V, U are open, V < U and f € D(U), then f|V € D(V);! if V,
(i € J) are open, V = U,V,, and fis a complex-valued function defined on V
such that f|V, € D(V;) for all i € J, then f € D(V)

(iii) there exists an integer m > 0 with the following property: for any
x € M, one can find an open set U containing x, and m real functions x,,
. ..,X, from D(U) such that (a) the map

Eiy= (i () xa(3))

is a homeomorphism of U onto an open subset of R™ (real m-space), and (b)

1If Fis any function defined on a set 4, and B = 4, then F|B denotes the restriction
of Fto B.



2 Differentiable and Analytic Manifolds Chap. 1

for any open set ¥ = U and any complex-valued function / defined on V,
f € D(V)if and only if fo £ is a C= function on [V].

Any open set U for which there exist functions x,,...,x, having the
property described in (iii) is called a coordinate patch; {x,, . ..,x,} is called
a system of coordinates on U. Note that for any open U = M, the elements of
D(U) are continuous on U.

It is not required that M be connected; it is, however, obviously locally
connected and metrizable. The integer m in (iii) above, which is the same for
all points of M, is called the dimension of M. The pair (M, D) is called differ-
entiable (C*~) manifold. By abuse of language, we shall often refer to M itself
as a differentiable manifold. It is usual to write C=(U)instead of D(U) for any
open set U = M and to refer to its elements as (C*) differentiable functions
on U. If U is any open subset of M, the assignment V— C=(V)(V = U,
open) gives a C* structure on U. U, equipped with this structure, is a C~
manifold having the same dimension as M it is called the open submanifold
defined by U. The connected components of M are all open submanifolds of
M, and there can be at most countably many of these.

Let k be an integer > 0, U = M any open set. A complex-valued function
S defined on U is said to be of class C* on U if, around each point of U, f'is a
k-times continuously differentiable function of the local coordinates. It is
easy to see that this property is independent of the particular set of local
coordinates used. The set of all such fis denoted by C*(U). (We omit k when
k=0:C(U)= C°U). C*(U)is an algebra over the field of complex numbers
C and contains C=(U).

Given any complex-valued function fon M, its support, supp f, is defined
as the complement in M of the largest open set on which f'is identically zero.
For any open set U and any integer k with 0 << k << oo, we denote by C*(U)
the subspace of all f € C*(M) for which supp fis a compact subset of U.

There is no difficulty in constructing nontrivial elements of C=(M). We
mention the following results, which are often useful.

(i) Let U = M be open and K < U be compact; then we can find ¢ €
C=(M) such that 0 < ¢(x) < 1 for all x, with @ = 1 in an open set containing
K, and ¢ = 0 outside U. '

(ii)) Let {V;},c, be a locally finite? open covering of M with CI(V,) (CI
denoting closure) compact for all / € J; then therearep, € C=(M)(i € J)
such that

(a) foreachi € J @, > 0 and supp ¢, is a (compact) subset of V;
(b) Z,-E, @{(x) = 1 for all x e M (this is a finite sum for each x,
since {V};¢, is locally finite).
{9.}ic, is called a partition of unity subordinate to the covering {V};c,.

2A family {E;};es of subsets of a topological space S is called locally finite if each point
of X has an open neighborhood which meets E; for only finitely many i € J.
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Tangent vectors and differential expressions. Let M be a C~ manifold
of dimension m, fixed throughout the rest of this section. Let x € M. Two
C= functions defined around x are called equivalent if they coincide on an
open set containing x. The equivalence classes corresponding to this relation
are known as germs of C= functions at x. For any C= function fdefined around
x we write f, for the corresponding germ at x. The algebraic operations on
the set of differentiable functions give rise in a natural and obvious fashion
to algebraic operations on the set of germs at x, converting the latter into an
algebra over C; we denote this algebra by D,. A germ is called real if it is
defined by a real C* function. The real germs form an algebra over R. For
any germ f at x we write f(x) to denote the common value at x of all the C~
functions belonging to f. It is easily seen that any germ at x is determined by
a C= function defined on all of M.

Let D* be the algebraic dual of the complex vector space D,, i.e., the
complex vector space of all linear maps of D, into C. An element of D¥ is said
to be real if it is real-valued on the set of real germs. A tangent vector to M
at x is an element v of D¥ such that

(1.1.1)

{ (i) v isreal
(i) o(fg) = f(x)v(g) + g(x)v(f) for allf,g € D,.

The set of all tangent vectors to M at x is an R-linear subspace of D¥, and is
denoted by T,(M); it is called the tangent space to M at x. Its complex linear
span T, (M) is the set of all elements of D¥ satisfying (ii) of (1.1.1). Let U be
a coordinate patch containing x with x,,...,x,, a system of coordinates on
U, and let

U={x0)....xa(»):y € U}

For any f € C=(U)let f € C=({) be such that fo(xy,...,x,) =f Then
the maps

for 1 <j<m(t,,...,, being the usual coordinates on R™) induce linear
maps of D, into C which are easily seen to be tangent vectors; we denote
these by (d/dx,),. They form a basis for T (M) over R and hence of T, .(M)
over C. )

Define the element 1, € D* by

(1.1.2) 1.(f) =f(x) (f € D,).

1, is real and linearly independent of T,(M). It is easy to see that for an ele-
ment v € D} to belong to the complex linear span of 1, and T,(M) it is
necessary and sufficient that v(f, f,) = 0 for all f,, f, € D, which vanish at x.
This leads naturally to the following generalization of the concept of a tangent
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vector. Let
(1.1.3) J.,={f:f e D,,f(x) =0}

Then J, is an ideal in D,. For any integer p > 1, JZ is defined to be the linear
span of all elements which are products of p elements from J, ; JZ is also an
ideal in D,. For any integer r > O we define a differential expression of order
<r to be any element of D* which vanishes on J;*!; the set of all such is a
linear subspace of D* and is denoted by T ¢)(M). The real elements inT (M)
from an R-linear subspace of T{)(M), spanning it (over C), and is denoted by
T (M). We have TO(M) =R-1,, T"(M) =R-1, + T.(M),and T (M)
increases with increasing r. Put

TE(M) = ) TO(M)

(1.1.4) r=0
TM) = TAM).

r20

T(M) is a linear subspace of D¥, and T((M) is an R-linear subspace
spanning it over C.

It is easy to construct natural bases of the T{”(M) in local coordinates.
Let U be a coordinate patch containing x and let Uandx,,...,x, beas in
the discussion concerning tangent vectors. Let (a) be any multiindex, i.e.,
(a) = (ay, . . . ,&,) Where the a; are integers >0; put |a| =&, + -+ + &,
Then the map

o'=If
IH( oty - - - oty

induces a linear function on D, which is real. Let d{* denote this (when
(@) = (0), 3 = 1,). Clearly, ' € T"(M) if |a| < r.

(feC2(U))

)ln = X1(X) ceos I = X (X)

Lemma 1.1.1. Let r > 0 be an integer and let x € M. Then the differen-
tial expressions 3% (|a| < r) form a basis for T(M) over R and for T)(M)
over C.

Proof. Since this is a purely local result, we may assume that M is the
open cube {(¥;, .. .,¥m):|y;] < afor 1 <j< m}inR™ with x as the origin.
Let ¢,, ... ,t, be the usual coordinates, and for any multiindex (8) = (8,,

. »fn) let t# denote the germ at the origin defined by #§' . . . #5~/8,! - - - B!

Let f be a real C~ function on M and let g, . () =f(tx,,...,tx,)
(—-1<r< 1, (xy,...,x,) € M). By expanding g,, ., about? = 0in its
Taylor series, we get

B = 5 Lo @+ L J' (¢ — uy g0, () du
0ss< e 0



