THEORY OF

QUANTITATIVE MAGNETIC
RESONANCE IMAGING

HERNAN JARA

/

[
\\:3 World Scientific




THEORY OF

QUANTITATIVE MAGNETIC
RESONANCE IMAGING

- -

]
2]

N ER R CYRRE B N
N

H E RESAN A RAST:
Bpst ivers y‘?USA':‘T"

i

\\:%‘p World Scientific

NEW JERSEY - LONDON - SINGAPORE - BEIJING « SHANGHAI « HONG KONG - TAIPEI « CHENNAI



Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

THEORY OF QUANTITATIVE MAGNETIC RESONANCE IMAGING
Copyright © 2013 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN 978-981-4295-23-9

Typeset by Stallion Press
Email: enquiries @stallionpress.com

Printed in Singapore by B & Jo Enterprise Pte Lid



THEORY OF
QUANTITATIVE MAGNETIC
RESONANCE IMAGING



o, 7 B 52 BEPDRIE Ui H) : www. ertongbook. com



Para Sebastidn y Carola,
mis companeros de vida






PREFACE

Quantitative Magnetic Resonance Imaging (¢MRI) refers to a diverse
collection of image acquisition techniques and image processing techniques
that are used as matched pairs for mapping the spatial distributions of
the physical quantities that influence MRI signals; such physical quantities
are known as qMRI parameters. The many qMRI parameters include:
1) measures of the amount of the MR-active substance --e.g. the proton
density--. 2) Measures of states of motion --i.e. kinetic properties such as
molecular diffusion, perfusion, and flow--, and 3) measures of interactions
between the MR-active substance and the molecular environment --e.g.
relaxation times and magnetization exchange parameter— as well as
interactions between the patient and the MRI scanner.

Succinctly, gMRI is the science of mapping -- or imaging -- qMRI
parameters, or equivalently, the science of quantifying tissue properties at
the spatial scale of imaging volume element (voxel) as represented by the
picture element (pixel). Accordingly, the central mathematical object of
gMRI is the numerical value of every pixel —-or pixel value—- and the main
objective of qMRI is to generate scientific grade pixel values that bear
scientific units of measurement and that therefore have a more absolute
meaning than the pixel values of directly acquired MR images. Most MR
images currently used in clinical practice consist of non-quantitative pixel
values meaning that these do not bear scientific units and are not directly
comparable to pixel values of other images of even the same patient. Such
directly acquired images are weighted by qMRI parameters and the pixel
values have meaning only in relation to other pixel values in that particular
dataset.

gqMRI is an evolving scientific discipline that has the potential of
impacting all stages of clinical and research MRI practices, from image
acquisition, to image processing, to image interpretation. To the best of my
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knowledge, to date there are only two other books in this subject matter,
specifically “Quantitative MRI of the Brain: Measuring Changes Caused
by Disease”, Edited by Paul Tofts and “Quantitative MRI in Cancer”,
Edited by William Hendee. These landmark books cover qMRI theory in
a manner that is intertwined with medical applications. The purpose of
the much shorter book herein is to provide a concise and unified theoretical
description of gMRI theory only and is intended primarily as a textbook for
a graduate level course potentially offered by academic departments such
as Bioimaging, Biomedical Engineering, Computer Sciences, Mathematics,
or Physics.

This textbook has its origin in lecture notes for an undergraduate
course —-Introduction to Medical Imaging—- that I have been teaching for the
past eleven years as part of the curriculum of the Biomedical Engineering
department at Boston University. It is through interactions with the
students and with my colleagues of the Radiology Department at Boston
University that [ have come to understand the unifying principles of Medical
Imaging, its implications to qMRI theory, and the value of quantification
in medicine. I owe much to my research partners and colleagues Stephan
Anderson, Joseph Ferrucci, Alexander Norbash, Naoko Saito, Osamu Sakai,
Jorge Soto, and Memi Watanabe with whom I have collaborated for many
years. 1 am also deeply grateful to Peter Joseph and Felix Wehrli who
introduced me, in my formative years at the University of Pennsylvania, to
the fields of MRI and ¢MRI. Finally, I wish to thank Stephan Anderson for
editing this manuscript.

My dear father Alvaro Jara dedicated his academic life to research in
the field of Quantitative History. He inculcated in me a deep appreciation
for the power of quantification as a tool for understanding humankind as
well as nature in its various dimensions, When he passed away some years
ago, my dear friend and mentor Dr. Joseph Ferrucci told me that lost loved
ones “reverberate” in time, and these kind words certainly reverberate in
my mind as I finish this book.

HJ, 2013, Belmont, MA
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A. INTRODUCTION

A1l. Historical Notes

The earliest known manmade images are paintings in cave walls repre-
senting various animal and human figures. Although precise dating of
these primitive images is not without uncertainty, the earliest paintings
are believed to date to the prehistoric times, some as old as 32,000 years
ago. Considering that our earliest human ancestors date back several million
years, this is very recent in the human evolutionary timeline, thus indicating
that the practice of imaging as a human activity is a manifestation of very
advanced intellectual functions.

The camera obscura, originally described around 1000-AD, is the first
human invention that could generate images artificially in a manner bypass-
ing the human brain. The principle of operation of the camera obscura is
very similar to that of the eye consisting of a sealed box with a pinhole
via which specific rays of light are selectively accepted into the box. With
this setup, only the rays of light making a point-to-point correspondence
between the object and the imaging plane are accepted into the camera
obscura thus forming a high-fidelity image of an object positioned in front
of the pinhole. It would take another 800 years until the invention of the
photographic camera; the first imaging device that could not only create
images artificially but that could also store those permanently using plates
coated with a light-sensitive silver-halide emulsion.

It would take another hundred years until the discovery of x-rays
by Roéntgen (Roentgen, 1896), the first form of radiation that had the
prodigious property of penetrating solid matter in general and human
tissues in particular, thus permitting for the first time the investigation of
the internal human body by nondestructive means. So began a new branch
of medicine, namely radiology, which initially was limited to producing
shadow projectional images of the human body.
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During the classical period of medical imaging --from 1896 until
the early 1970’s—, imaging scientists and pioneering imaging physicians
investigated other penetrating radiations, contrast agents, and specialized
scanning techniques and technologies thus widening the range of applica-
tions of this emerging medical imaging science. This classical period saw the
advent of imaging with y-rays emitted by radioactive nuclei (Cassen, Curtis,
Reed, & Libby, 1951; Sweet, 1951; Wrenn Jr, Good, & Handler, 1951) and
with ultrasonic radiation (Dussik, 1942; Woo, 2010); nuclear imaging and
ultrasound imaging respectively.

In parallel to these scientific developments, and without an apparent
connection to medical imaging, the field of nuclear magnetic resonance
(NMR) emerged (Bloch, Hansen, & Packard, 1946: Purcell, 1946) and
evolved into one of the most fruitful branches of physics and chemistry.
The use of strong magnetic fields in conjunction with long-wavelength
electromagnetic radiation (radiowaves) permitted nondestructively probing
condensed matter via magnetic interactions with atomic nuclei, specifically
with the magnetic moments of some atomic nuclei, and most notably with
the 'H-proton nucleus of the hydrogen atom the most abundant chemical
element in nature and the primary building block of biologic matter.

The contemporary period of medical imaging begins with the invention
in 1972 of computed tomography (CT) with y-rays (Chesler, 1973) and
x-rays (Cormack, 1963; Hounsfield, 1973). In the case of x-ray CT, the new
imaging device combined a movable-x-ray-beam transmission apparatus
that targeted a single thin axial slice, with a digital computer. The CT
scanner would generate many geometrical projections of the targeted
slice at different angles of tomographic projection, which were stored
sequentially in the permanent memory of a computer thus generating a full
data set in signal space and allowing further mathematical processing. A
reconstruction program based on the mathematics of continuous geometric
projections --developed by Johann Radon in 1917 (Radon, 1917) -- would
then transform the signal space data set into a two dimensional repre-
sentation of the axial slice in geometric or anatomic space. The ingenious
strategy of probing internally an object with successive and systematically
different radiation experiments for generating a complete representation
of a thin slice in signal space --and to later transform it into geometric
space-- was soon thereafter adopted for tomographic imaging with the
nuclear induction experiment (Lauterbur, 1973). In this case, spectral
projections in Fourier domain were obtained by reading time dependent
NMR signals while applying a magnetic field gradient; thus marking the



