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Preface

Ecology is a subject which, by its very nature. must face up to the
complexities of the living world. It is, therefore. fraught with problems
concerning the quantification of its subject matter. One of these
problems is the estimation, or more generally the investigation, of
animal abundance.

Finding the solution to this problem, as is so often the case, has
largely been the work of mathematicians or statisticians. But the
potential users of the solution are biologists. My aims, therefore, are
to communicate to biologists, at both student and research level, the
essential simplicity of the mathematical techniques: and also to
reassure them that it is their experience, as biologists, which can turn a
sterile mathematical technique into a potent biological weapon. Both
of these aims are, of course, pertinent to the conjugation of
mathematics and biology generally.

It is a pleasure to thank Dr. J. A. Bishop and Dr. K. O’Hara for
their help with the manuscript; and my wife, Sally. for her help in
clarifying passages which, despite my good intentions, I had left
obscure. I should like, also, to acknowledge my debt to the paper by
R. M. Cormack (1973). which first awakened me to the proposition
that mathematical techniques can be reduced to common sense. 1
have tried, in what follows, to convey this same message.

Liverpool, 1978 M.B.
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1 Context

Biologists all too often act as if mathematical techniques possess
magical powers, transforming incomprehensible raw data into clear
and precise scientific conclusions. Nothing could be further from the
truth. Far from being magical, such techniques are, in fact. essentially
sterile. They become potent only in the light of the biological problem
to which they are applied, and the biological context in which they are
interpreted. A consideration of mathematical techniques must.
therefore, be preceded by a consideration of problems and contexts.

The roe-deer enjoys extreme popularity throughout most of
Europe as an attractive member of the mixed-woodland community.
Ironically, it is also a much-coveted hunting trophy. In 1962, for
instance, Andersen reported that in Denmark alone around 25000
roe-deer were being killed each year by more than 100000 licensed
sportsmen. Thus, the management of deer populations, and the policy
regarding their shooting, must obviously be founded on a firm basis of
biological fact. And especially important is the need for reliable
information on the actual numbers of deer in particular woodlands
(population size), or —what is essentially the same thing - knowledge
of their absolute density (numbers per unit area).

Andersen described an attempt to measure the absolute density of
roe-deer on the Danish Game Research Farm. The attempt was made
by the forestry and game personnel, who had known the farm’s
woodlands for years. and spent part of every day there. No group
could have been more experienced. They tried simply to count all the
deer, and considered there to be about 70 present. But in the
subsequent three months they managed to kill 213 deer in the same
isolated woodland.

The experienced gamekeepers were incredulous at this
discrepancy — but they should not have been. A simple count or
census is justifiable — though not without difficulties—for an entirely
visible and sedentary population. But roe-deer are continually, and
unpredictably, on the move: and their ability to escape detection is
obviously good enough to deceive even the most experienced census-
taker. If a firm basis of biological fact 1s required for this mobile and
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2 Context

cryptic mammal, then some more objective method of measuring
absolute density is necessary.

Such information is urgently required — but only as a consequence
of man's desire to exploit a part of his environment for his own
pleasure. Frequently, however, the motivation behind population
studies is much more humanitarian. Although nowadays we in the
West are largely free from dangerous infectious disease, this is by no
means world-wide. Dengue haemorrhagic fever, for instance, is a virus
infection transmitted by the mosquito Aedes aegypti. which primarily
affects young children. It was only recognized as a specific condition
in 1953, but by the mid-1960’s it had become a health problem in
much of southern Asia.

In 1966, the World Health Organization established their Aedes
Research Unit in Bangkok, the capital of Thailand. It had been noted
there that the incidence of the disease showed a marked increase in the
wet season. and that the outbreaks tended to be larger every second
year. The presumption made by many researchers was that these
cycles in the incidence of the disease were correlated with cycles in the
density of the mosquitoes, or, perhaps. in their efficiency as vectors.
The Aedes Research Unit set out to investigate whether there was any
truth in these presumptions (Sheppard et al., 1969). The aim was to
control the disease. This could only be achieved by basing any plans
on a proper understanding of mosquito ecology.

Among the relevant ecological parameters were the actual density
of mosquito populations at different times of the year: the tendency of
mosquitoes to move from one area (population) to another (which
would affect the efficiency with which they located humans); and the
life-expectancy of mosquitoes (which would also affect their efficiency
as vectors). Life-expectancy can. of course, be quantified by
measuring survival-rates: the higher a mosquito’s chance of survival,
the longer it can be expected to live.

[t was essential that these parameters should be investigated under
natural conditions: it was the dynamics of actual populations which
were assumed to underlie the fluctuations in the disease’s occurrence.
The major problem facing the unit was, therefore, a practical one: to
investigate the size, along with other parameters, of a population of
actively mobile mosquitoes, in an urban environment large enough to
support two million people —and to do this over an extended period of
time, while the mosquitoes themselves passed through several
generations: being born, maturing and dying.

Yet, if the ecology of the mosquitoes was to be properly understood.
and anenlightened control planinstituted, this problem had to besolved.
Progress towards the amelioration of dengue haemorrhagic fever was.
therefore, crucially dependent on reliable information concerning the
population parameters of the mosquitoes.
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The mosquito and the roe-deer are both important to man. One we
wish to control in order to alleviate suffering: the other we wish to
exploit in order to increase pleasure. In both cases there is a
requirement for information on the absolute density of non-
cooperative populations, and on the processes leading to these
densities: birth, death, emigration and immigration. Of course, such
requirements are not confined to studies with an immediate
application, as the following example shows.

Population genetics is essentially the study of the origin and
dynamics of genetic variation within and between populations. In
other words, the population geneticist seeks to account for the
similarities and differences in gene frequencies between conspecific
individuals. between conspecific populations, between closely-related
species. and so on. In the past. there have been three classes of
approach to this extremely daunting task: the theoretical. the
laboratory and the field.

The theoretician identifies the processes which are potentially
capable of affecting gene frequencies, and investigates their relative
importance and combined action in a number of hypothetical
circumstances. Many of these are themselves influenced by the
ecological circumstances of the population in question. In spite of
this. the theoretical population geneticist seeks to increase our
understanding of the real world by considering idealized populations.
This is the only way he can make any progress.

The population genetics fieldworker attempts to increase our
understanding of the real world by studying the real world itself.
Between him and the theoretician lies the laboratory worker.
Laboratory work can uncover the potentialities of actual organisms.
[t can “test” the models of the theoretician, and indicate to him what is
biologically realistic; and it can provide the fieldworker with the
results of controlled experiments to compare with any inference he
may make. Ultimately, however, all population geneticists are
interested in the real world. Yet. it is only by interpreting his results
against a coherent theoretical background. that the fieldworker can
hope to succeed in making the real world understandable. Fusing the
different aspects of population genetics is obviously essential.

Towards this end the American geneticist Sewall Wright (1969)
developed the concept of effective population size: essentially, the size
of the ideal population with which an actual population can be
equated genetically. In other words, by collecting the appropriate
data from a natural population the effective population size can be
estimated, and the results of the theoretician and laboratory worker
applied to the field. As Wright himself has remarked, estimating
effective population size is *. .. a practical necessity in dealing with
natural populations’.
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The quantification of absolute densities plays a crucial role in
determining the effective size of a natural population. Yet the animals
most often studied by population geneticists— butterflies. moths.
fruit-flies, snails, and so on—are. once again, impossible to census by a
direct count. It follows that the successful fusion of practical and
theoretical aspects of population genetics is dependent on our ability
to measure the absolute density of populations of animals, which are
either mobile. cryptic or both.

It would be easy to follow example with example: the exploitation
of freshwater fish for food; the destruction of verminous small
mammals by poisoning; the protection of birds in disappearing parts
of the environment: the removal of insect pests from crops; as well as
the understanding of population dynamics for its own sake. All of
these are areas where it is crucially important to measure the absolute
density of populations of non-cooperative animals. Moreover, if we
wish to exploit a fish population we will need to know the birth-rate: if
we wish to destroy small mammals we will need to know the extent to
which different populations intermix: and generally. if we wish to
understand population dynamics we will need to study the forces
underlying those dynamics: birth, death, immigration and
emigration. Such an argument is easy to summarize: information on
the absolute density of animal populations. and the forces
determining density. is essential.

But the expressions—‘information on’ and ‘measurement of’
density —are unacceptably vague. The situation can be compared with
a consideration of the length of the River Dee, or the volume of Lake
Bala. Length. volume and number are all commonplace concepts, but
there are cases (the River Dee, Lake Bala, and most animal
populations) in which their measurement is by no means easy.
Neither is it easy to say exactly where the River Dee begins or ends: or
exactly what water level to assume in Lake Bala; or exactly where the
limits of a population are. And finally, and by no means facetiously,
for someone wishing to swim the Dee, it is only necessary to know if it
is more or less than a mile or so long.

In other words, we must accept first of all that no population size
can ever be specified exactly. But we must also accept that an exact
specification is usually unnecessary. A geneticist measuring effective
population size may only need to know whether his population is
sufficiently small for genetic drift to be a potentially potent force. The
Aedes Research Unit in Bangkok really only needed to know whether
mosquito-density and disease-incidence were correlated. A Danish
game-keeper may only need to know whether he should let 30 or 130
roe-deer be shot in a season. There are. of course, many situations
where more precise information is required. But the basic point is the
same: population sizes are measured in response to specific ecological
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questions, and the form of the question determines the precision and
accuracy required of the answer.

In fact, one can go further. In an ideal world, precision and
accuracy would always be maximized. But, in particular cases, time,
money, personnel, and particularly technique may all be severely
limited. In practice, therefore, precision and accuracy must be
sacrificed in order to minimize the limitations of these other factors.
The extent of the sacrifice is determined by the question in hand, and
the circumstances of the study: context is all-important.



2 The Models

The first chapter established the interest of ecologists in estimating
both the size of mobile animal populations and the strengths of those
processes which determine the size. Operations designed to satisfy
this interest will now be examined. All of the methods to be described
involve marking, releasing and recapturing individuals. Most of them
demand that these processes be repeated several times. A variety of
generic names have been used for these methods: mark-release-
recapture, release-recapture, multiple-recapture, and so on. I shall
refer, in general, to capture-recapture methods and capture-recapture
models.

The first chapter also established the importance of context in
determining what methods should be used. This applies not only
within the range of capture-recapture models, but also between
capture-recapture and other models. There are undoubtedly
situations in which the accuracy required of the answer, and the
limitations in resources, suggest that some method other than
capture-recapture is the most appropriate. Such methods will not be
described here, because space is limited. No value judgement is
implied.

2.1 The Petersen estimate

Even the most sophisticated models are directly descended from
the simplest, which is the one first advocated by Petersen in 1896. It
was also used by Lincoln in 1930 to estimate the size of the North
American duck population, and is often called the Lincoln Index.

Imagine that we wish to estimate the size of a population into which
there is neither birth nor immigration. On a first visit we catch a
random sample of r individuals, mark them so that we can recognize
them in future, and return them to the population. They remix
perfectly with the unmarked individuals. Subsequently there is both
death and emigration, to which, however, marked and unmarked
animals are equally prone. The marked proportion remains the same
as when the r marked individuals were initially released. On a second

6



The Petersen estimate 7

visit a further random sample is caught: total size n, of which m

individuals are marked. If the size of the whole population

immediately before the first visit was N, then it should be true that:
mor

n N
i.e. the marked proportion has remained the same, and our random
sample of a perfectly mixed population reflects this.

We can now estimate N. The symbol N (‘N-hat’) denotes ‘an
estimate of N°, and therefore:

B2
m
This is the Petersen estimate.

Imagine that the population is subject to birth and immigration,
but not to death and emigration. After the first visit, all of the r marked
individuals would remain in the population, but there would be
neither birth nor immigration of marks. The number of unmarked
individuals, however, would increase steadily and the marked
proportion steadily decline. The marked proportion in the second
random sample would, therefore, reflect the situation at that time. In
other words, N would refer not to the first, but to the second visit.

Of course, if there is neither birth, death, emigration nor
immigration, the population size remains constant, and N refers to
both first and second visits. In fact, this (most restrictive) case is the
one usually envisaged for the Petersen estimate. For convenience it
will be referred to as the ‘simple Petersen estimate’.

In 1951, Bailey showed that, in cases where the numbers involved
were small (m around 10, or less), the modified formula:

N = rJn-H)
(m+1)

gave a more accurate (less biased) estimate. When numbers are large,
the difference between the modified and unmodified formulae is
negligible. The modified formula is, therefore, of more general
application. Similar formulae will be used in most future calculations.

Bailey also derived a formula for the standard error of this estimate:

r2(n+1)(n—m)
SEq = (m+1)*(m+2)

The Petersen estimate is the simplest estimator of population size
using marked individuals, but it is also the one of most restricted
utility. There are two basic reasons for this. The first is that it involves
just one release and one recapture; even the simplest alternatives
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improve upon it by using more data. The second is that there are
marginally more assumptions implicit in the Petersen estimate than

in

most other models. These assumptions must now be examined.

2.2 Capture-recapture assumptions

1)

2)

5)

The first, and almost trivial, assumption is that all marks are
permanent, and are noted correctly on recapture. This, of course,
refers only to the period of study: subsequent losses are
irrelevant.

The second assumption is that being caught, handled and
marked one or more times has no effect on an individual’s
subsequent chance of capture. This infers both that the inherent
‘catchability’ of an individual is unaffected by being caught; and
that the position of marked individuals in the population, after
sampling, is no different to that which would be expected if they
had never been caught.

Thirdly, it 1s assumed that being caught, handled and marked
one or more times has no effect on an individual’s chances of
dying or emigrating. Implicit in this assumption is another one:
that all emigration is permanent, and therefore essentially
indistinguishable from death.

Furthermore, it is assumed that all individuals-whether marked or
not-have, inherently, an equal chance of being caught. This is
tantamount to assuming that the populationissampled at random,
without regard for the age, sex or physiological condition of
individuals. Note that this assumption will still hold if, on a
particular day, catchabilities are not equal, but individuals are
assigned a catchability-class at random. In other words we are
assuming that thereis no inherent difference, not that on a particular
day there is no difference at all. It follows from this that individuals
from different classes within the population will be sampled in the
proportion in which they occur.

The analysis of a heterogeneous population will produce
results which are applicable neither to the individuals or
individual classes, nor to the population as a whole.
Consequently this assumption can, and should whenever
possible, be side-stepped by dealing with the different sexes, age-
classes, etc. separately.

It is also assumed that all individuals—whether mdrked or
not —have, inherently, an equal chance of dying or emigrating.

These five assumptions apply to almost all capture-recapture

models. The exceptions will be indicated in the models concerned.

6)

The Petersen estimate assumes either that there are no births or
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immigrations, or that there are no deaths or emigrations, or that
there are none of these. Most alternative models do not make any
of these assumptions.

7) The final assumption—which applies to all models that do not
assume that there is neither birth. death, emigration nor
immigration - is that sampling periods are short in relation to
total time. This is because birth, death, immigration and
emigration are all processes which we may call quasi-continuous.
That is to say we treat them as continuous, while recognizing that
they are actually made up of a series of discrete, singular events.
We know, for instance, that death affects one whole individual at
a time, but we might still compute a death-rate of 0.05 individuals
per minute. In other words, we recognize that there is a
continuous possibility of death.

Most capture-recapture models include these quasi-
continuous processes, and many actually quantify them. If they
are to be quantified, then they must be measured between two
points in time. This means that sampling periods are assumed to
be points in time. In fact, even if the processes are not quantified,
population size is estimated for a sampling occasion on the
assumption that the processes do not alter population size
during the sampling occasion. Once again, a sampling period is
assumed to be a point in time. Strictly speaking. this assumption
can never hold-sampling can never be instantaneous- but
attempts to conform as closely as possible to the assumption
should still be made. Sampling periods should be short in
relation to total time. This should lead, in turn, to the intervals
between samples being discrete.

2.3 Notation

Before the individual models are examined. it will be useful to
describe a common notation which will be employed throughout.

2.3.1 Sampling

In essence, all of the following methods involve taking a series of
samples from the population under study. Most commonly, the
intervals between these samples are one or more days, and sampling is
said to occur on ‘day 7', *day 2’ etc. Remember that a ‘day / sample’
refers to a sample taken over a short period during day /. Remember.,
also, that other time intervals are equally acceptable, and that ‘days’
refer to any discrete time interval. It follows from this that in practice
it is always advisable, and in some methods essential, for samples to be
taken at the same time each day. In this way all time intervals are the
same, or, at worst, simple multiples of one another.



10 The models

The size of each sample. the number caught. will be denoted by n.
Thus, on day / n; individuals are caught; on day 2 n, individuals are
caught; and, in general, on day i n; individuals are caught.

Often, every one of these individuals will be marked and released.
Sometimes, however. animals are harmed or damaged during
handling. so that the number of marked individuals released on day i
is less than the number originally caught (n;). The number of marked
individuals released on day i will be denoted by r,.

2.3.2 Marking

A brief comment about marking is convenient here, although this
will be examined again in Chapter 5. There are, essentially, three types
of mark. The first is individual-specific, allowing each animal to be
recognized individually, and providing the maximum amount of
information on recapture. Such information is, however, largely
superfluous in the present context. The second type is date-specific.
On recapture, such marks allow the previous occasion or occasions:
on which the animal was caught to be noted. A single, individual-
specific mark does, of course, have this same capacity. The third type
of mark is neither individual- nor date-specific. It merely allows
animals to be classified as marked or unmarked, providing the
minimum amount of information.

Most of the following methods presume that marking is date-
specific, and such marking is, therefore. to be recommended. When
marking is individual-specific, the pattern of marks on each
recaptured animal that would have resulted from date-specific
marking must be imagined. This imaginary pattern must then be
used.

On every day except the first a proportion of the sample will
probably be marked. In those cases where the total number of marks
caught on day i is required, this will be denoted by m;. Often, however,
it will also be necessary to partition m; according to when the mark
was given. For instance, of m, marks caught on day 4, some will be
from day /, some from day 2, and some from day 3. These will be
denoted by m, ;, m, , and m, ; respectively; and, in general, by m, ;
where i is the day of capture, and j the day of marking.

2.3.3 Population size

The most obvious, but by no means the sole, purpose of capture-
recapture studies is the estimation of population size itself. The
population size on day i will be referred to as N,.
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2.3.4 Death and emigration

Capture-recapture methods do not, in themselves, distinguish
between death and emigration. They must, therefore, be considered
together as ‘loss’. L; will be used to denote the number of individuals
lost from a population between days i and i+ /. (For instance, L, is
the number of individuals either dying or emigrating between days 2
and 3.)

Those individuals which are not lost survive, and it is often survival
rather than loss which is measured. This, apart from anything else,
avoids the disadvantage of equating death and emigration. In fact it is
usual to consider survival-rate: the proportion of the population
surviving from one occasion to the next, or the probability of any one
individual surviving from one occasion to the next. ¢, (‘phi’;) will be
used to denote the proportion surviving from day i until day i+ /.
Several methods calculate one survival-rate only, on the assumption
that the rate of survival is constant. This will be denoted simply by ¢.

2.3.5 Birth and immigration

Capture-recapture methods are also unable to distinguish between
birth and immigration, and these too must be considered together —as
‘gains’ or ‘additions’. B; will denote the number of additions between
days i and i+ /, and b, will denote the proportion of the day i+ /
population that were added between days i and i+ /. When b, is
assumed to remain constant from day to day it will be referred to as b.

2.3.6 ‘Marks at risk’

The simplest Petersen estimate rests on the assumption that the
marks released on the first occasion represent the sum total of marks
available for recapture on the second. All alternative methods,
however, modify this assumption to some extent. Primarily, it is
generally recognized that a proportion of the marks are subject to
either death or emigration each day. But the consequent decline in the
number of marks is usually opposed by the fact that fresh marks are
regularly being added to the population.

These two factors combine to determine the ‘marks at risk’, M;: the
number of marks in the population which are available for sampling
immediately before the day i sample. Obviously, additions to M, can
only be made with the experimenter’s knowledge—by releasing a
known number of marked individuals. Yet in other respects M, is
assumed to be a true sub-population of N;: loss-rates in the marked
and unmarked portions of the population are assumed to be the same,
proportions captured ol the marked and unmarked portions are
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assumed to be the same, and so on. In other words. the marked
individuals are regarded as truly representative of the whole
population. Measurements can be made on those marked individuals,
because they are identifiable. These measurements are assumed to be
equally applicable to the whole population.

It should be clear that M, is analogous to the term r in the Petersen
estimate. Not surprisingly, the estimation of M, is a crucial part of
most Petersen estimate derivatives.

2.3.7 Summation

Most of the terms introduced so far have had two components: the
quantity which they measure, and the day to which they apply. For
instance, m; refers to the number of marks caught —on day 3. Many of
the following methods require several of these terms to be added
together. For instance, in a study lasting five days we may need to
know the following sum: r,+r,+r;+r, —the total number of
marked individuals released (none are released on day J5). It is
convenient to have a shorthand method of representing such sums,
and the one generally used is:

Put into words, this is the sum of the r;'s, where i takes all values from /
to 4.

Furthermore, in this particular case, since we know that marked
individuals are released on all days except the last, it is really only
necessary to write:

Yr;oreven Y,
i

—the total number of marked individuals released.

The notation used in the models is tabulated in Table 2.1.

We are now in a position to consider the various capture-recapture
models. In each case, the model itself will be described first, followed
by a worked example, and then by a discussion of the model’s utility.
The description will concentrate on rationale. This should promote a
critical appreciation of the model, but may do so at the expense of a
superficial and rapidly-learnt ability to use it. For this reason, it is
likely that an understanding of how to apply the model - as opposed
to an understanding of the model itself—will be developed by
considering the description and worked example together.

Many of the models include formulae for calculating the standard
error of their estimates. Standard errors measure precision, and. at



