Lecture Notes in Computer Science, 38

An Optimized Translation

Process and Its
Application to ALGOL 68

AP. Branquart - J.-P. Card.agel - J. Lewi
J.-P. Delescaille - M. Vanbegin

Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

38

P. Branquart - J.-P. Cardinael - J. Lewi
J.-P. Delescalille - M. Vanbegin

An Optimized Translation Process
and lts Application to ALGOL 68

Springer-Verlag
Berlin - Heidelberg - New York 1976

Editorial Board
P. Brinch Hansen - D. Gries - C. Moler - G. Seegmiiller - J. Stoer
N. Wirth

Authors

Paul Branquart
Jean-Pierre Cardinael*
Johan Lewi**
Jean-Paul Delescaille
Michael Vanbegin

MBLE Research Laboratory
Avenue Em. van Becelaere 2
1170 Brussels/Belgium

* Present address: Caisse Générale d'Epargne et de Retraite,
Brussels, Belgium

** Present address: Katholieke Universiteit Leuven,
Applied Mathematics and Programming
Division, Leuven, Belgium

Library of Congress Cataloging in Publication Data
Main entry under title:

An Optimized translation process and its applica-
tion to ALGOL 68.

(Lecture notes in computer science ; 38)
Bibliography: p.
Includes index.
1. ALGOL (Computer program language)
2. Compiling (Electronic computers) I. Branquart,
Paul, 1937~ II. Series.
QA76.73.A24067 001.6'42k 75-45092

AMS Subiject Classifications (1970): 68-02, 68 A05, 90-04
CR Subject Classifications (1974): 4.1,4.12

ISBN 3-540-07545-3 Springer-Verlag Berlin - Heidelberg - New York
ISBN 0-387-07545-3 Springer-Verlag New York - Heidelberg - Berlin

This work is subject to copyright. All rights are reserved, whether the whole
or part of the material is concerned, specifically those of translation, re-
printing, re:use of illustrations, broadcasting, reproduction by photocopying
machine or similar means, and storage in data banks.

Under § 54 of the German Copyright Law where copies are made for other than
private use, a fee is payable to the publisher, the amount of the fee to be determined
by agreement with the publisher.

© by Springer-Verlag Berlin - Heidelberg 1976

Printed in Germany

Offsetdruck: Julius Beltz, Hemsbach/Bergstr.

FOREWORD

In the late sixties, the-definition of ALGOL 68 [1], for a long time called
ALGOL X, reached some stability. It is at that period (1967) our team started the
project of writing a compiler for that language. We had two goals in mind :

(1) to make significant research in the field of compiler methodology,
(2) to point out the special difficulties encountered in the design of the compiler
and thus possibly influence the definition of the language.

This book is concerned with the first goal only ; ALGOL 68 should be considered
a support to explain and develop compiling principles and techniques.

The whole book is directly based on the actual compiler we have written for the
Electrologica-X8 computer ; this compiler has been operational since early 1973.
Since May 1975, it is available on the "BS-computer', the Philips prototype develo-
ped by MBLE and which is at the origin of the UNIDATA 7720. In fact, the X8 has been
microprogrammed on the BS [22] ; it is worthwhile to mention that microprogramming
did not introduce any significant loss in efficiency.

The book does not require a very deep knowledge of ALGOL 68 except in some special
cases described here for the sake of completeness only. The reading of some general

description of the language as provided by [17] is however assumed.

Acknowledgments
. We should like to express our thanks to Mrs Micheline Mispelon for her excellent

typing of the manuscript and to Mr Claude Semaille for his careful drawing of the
figures.

SUMMARY

The book describes a translation process which generates efficient code while re-—
maining machine independent. The process staxts from the output stream of the syntac-—
tic analyzer.

(1) Code optimization is based on & mechanism controlling a number of static proper-
ties and allowing to meke long range previsions. This permits to minimize the
dynamic (run-time) actions, replacing them by static (compile-time) ones whene-
ver possible. In particular, much attention is paid on the minimization of run-
time copies of values, of run-time memory management and of dynamic checks,

(2) Machine independency is improved by translating the programs into intermediate
code before producing machine code. In addition to being machine independent,
intermediate code instructions are self-contained modules which can be transla-
ted into machine code independently, which improves modularity. Only trivial lo-
cal optimizations are needed at the interface between intermediate code instruc-
tions when machine code is produced.

The description of the translation process is made in three parts
-PART I defines the general principles on which the process is based. It is made as

readable as possible for an uninitiated reader.

—-PART II enters the details of translation into intermediate code : particular pro-
blems created by all ALGOL 68 language constructions and their interface are soll
ved.

-PART III shows the principles of the translation of the intermediate code into ma-

chine code ; these principles are presented in a completely machine independent way.

CONTENTS

PART I : GENERAL PRINCIPLES

0. INTRODUCTION
0.1 BASIC CONCEPTS
0.2 THE TRANSLATOR AUTOMATON

1. RECALL OF STORAGE ALLOCATION PRINCIPLES
1.1 MEMORY REPRESENTATION OF VALUES
1.2 CONCEPTUAL MEMORY ORGANIZATION
1.3 PRACTICAL MEMORY ORGANIZATION
1.4 RANGE STACK ACCESSES
1.5 REMARK ON THE IMPLEMENTATION OF PARALLEL PROCESSING

2. STUDY OF THE STATIC PROPERTIES OF VALUES
2.1 THE ORIGIN
2.2 THE MODE
2.3 THE ACCESS
2.3.1 GENERALITIES ON ACCESSES
2.3.2 RESTRICTIONS ON ACCESSES
2.3.3 VALIDITY OF ACCESSES
2.3.4 LOCAL OPTIMIZATIONS
2.4 MEMORY RECOVERY
2.4.1 STATIC WORKING STACK MEMORY RECOVERY
2.4.2 DYNAMIC WORKING STACK MEMORY RECOVERY
2.4.3 HEAP MEMORY RECOVERY '
2.5 DYNAMIC CHECKS
2.5.1 SCOPE CHECKING
2.5.2 CHECKS OF FLEXIBILITY

3. STUDY OF THE PREVISION MECHANISM
3.1 MINIMIZATION OF COPIES
3.2 THE TOP PROPERTIES OF FLEXIBILITY

PART II : DETAILS OF TRANSLATION INTO INTERMEDIATE CODE

0. INTRODUCTION
0.1 GENERALITIES
0.2 METHOD OF DESCRIPTION
0.3 DECLARATIONS FOR RUN-TIME ACTIONS

12
12
12
12
15
17

19
19
20
21
21
23
26
27
31
31
34
40
56
56
61

67
67
69

71

73
73
74
78

1.

2.

3

Vi

0.3.1 BLOCK% CONSTITUTION

0.3.2 H% INFORMATION

0.3.3 DYNAMIC VALUE REPRESENTATION
0.4 DECLARATIONS FOR COMPILE-TIME ACTIONS

0.4.1 THE CONSTANT TABLE : CONSTAB

0.4.2 THE DECLARER TABLE : DECTAB

0.4.3 THE MULTIPURPOSE STACK : MSTACK

0.4.4 THE BLOCK TABLE : BLOCKTAB

0.4.5 RECALL OF STATIC PROPERTIES

0.4.6 THE SYMBOL TABLE : SYMBTAB

0.4.7 THE BOTTOM STACK : BOST

0.4.8 THE TOP STACK : TOPST

0.4.9 OBJECT PROGRAM ADDRESS MANAGEMENT

0.4.10 THE SOURCE PROGRAM : SOPROG

0.4.11 THE OBJECT PROGRAM : OBPROG

LEXICOGRAPHICAL BLOCKS

MODE IDENTIFIERS

2.1 IDENTITY DECLARATION

2.2 LOCAL VARIABLE DECLARATION

2.3 HEAP VARIABLE DECLARATION

2.4 APPLICATIONS OF MODE IDENTIFIERS

GENERATORS
3.1 LOCAL GENERATOR
8.2 HEAP GENERATOR

LABEL IDENTIFIERS

4.1 GENERALITIES

4.2 LABEL DECLARATION
4.3 GOTO STATEMENT

NON-STANDARD ROUTINES WITH PARAMETERS

6.1 GENERALITIES
6.1.1 STATIC PBLOCK INFORMATION
5.1.2 STRATEGY OF PARAMETER TRANSMISSION
6.1.3 STRATEGY OF RESULT TRANSMISSION

S.1.4 STATIC AND DYNAMIC ROUTINE TRANSMISSION

5.2 CALL OF STATICALLY TRANSMITTED ROUTINES
5.3 CALL OF DYNAMICALLY TRANSMITTED ROUTINES
5.4 ROUTINE DENOTATION

" 5.5 PREVISIONS

5.6 COMPARISON BETWEEN LBLOCKS AND PBLOCKS

79
82
83
84
84
84
87
87
90
96
97
98
99
100
100

101

108
108
22
116
116

118
118
119

121
121
121
122

124
124
124
125
126
127
128
134
138
143
144

6.

7.

8.

9.

10.

11.

12.

13.

Vil

NON-STANDARD ROUTINES WITHOUT PARAMETERS

3.1 DEPROCEDURING OF STATICALLY TRANSMITTED ROUTINES

6.2 DEPROCEDURING OF DYNAMICALLY TRANSMITTED ROUTINES

6.3 PROCEDURING (BODY OF ROUTINE WITHOUT PARAMETERS)

6.4 ANOTHER TRANSLATION SCHEME
6.4.1 DEPROCEDURING1 OF Sé'ATICALLY TRANSMITTED ROUTINES
6.4.2 DEPROCEDURING1 OF DYNAMICALLY TRANSMITTED ROUTINES
6.4.3 PROCEDURINGI

PROCEDURED JUMPS

7.1 GENERALITIES

7.2 CALL OF STATICALLY TRANSMITTED PROCEDURED JUMPS
7.3 CALL OF DYNAMICALLY TRANSMITTED PROCEDURED JUMPS
7.4 JUMP PROCEDURING

BOUNDS OF MODE DECLARATIONS

8.1 GENERALITIES

8.2 CALL OF MODE INDICATION

8.3 MODE DECLARATION (BODY OF ROUTINE)

DYNAMIC REPLICATIONS IN FORMATS
- 9.1 GENERALITIES
9.2 CALL OF STATICALLY TRANSMITTED FORMATS
9.8 CALL OF DYNAMICALLY TRANSMITTED FORMATS
9.4 DYNAMIC REPLICATIONS (BODY OF ROUTINE)

OTHER TERMINAL CONSTRUCTIONS
10.1 DENOTATIONS
10.2 SKIP
10.3 NIL
10.4 EMPTY

KERNEL INVARIANT CONSTRUCTIONS
11.1 SELECTION
11:2 DEREFERENCING
11.3 SLICE
11.4 UNITING
11.5 ROWING

CONFRONTATIONS
12,1 ASSIGNATION
12.2 IDENTITY RELATION
12.3 CONFORMITY RELATION

CALL OF STANDARD ROUTINES

146
146
148
150
151
152
153
154

156
156
156
157
158

160
160
161
162

165
165
166
168
170

172
172
172
173
174

176
176
182
185
194
198

208
208
210
212

215

14.

15.

16.

17.

PART

1

3.

5.

Vil

CHOICE CONSTRUCTIONS
14.1 GENERALITIES
14.1.1 DEFINITIONS
14.1.2 BALANCING PROCESS
14.1.3 GENERAL ORGANIZATION

14.1.4 DECLARATIONS RELATIVE TO CHOICE CONSTRUCTIONS

14.2 SERIAL CLAUSE

14.3 CONDITIONAL CLAUSE
14.4 CASE CLAUSE

14.5 CASE CONFORMITY CLAUSE

COLLATERAL CLAUSES

15.1 COLLATERAL CLAUSE DELIVERING NO VALUE
15.2 ROW DISPLAY

15.3 STRUCTURE DISPLAY

MISCELLANEOUS

16.1 WIDENING

16.2 VOIDING

16.3 FOR STATEMENT

16.4 CALL OF TRANSPUT ROUTINES

OTHER ICIS

IIT : TRANSLATION INTO MACHINE CODE

. GENERALITIES

ACCESSES AND MACHINE ADDRESSES
1.1 ACCESS STRUCTURE
1.2 PSEUDO-ADDRESSES

METHOD OF CODE GENERATION
2.1 SYMBOLIC REPRESENTATION OF CODE GENERATION
2.2 ACTUAL IMPLEMENTATION OF CODE GENERATION

LOCAL OPTIMIZATIONS
THE LOADER

TRANSLATION OF INTERMEDIATE CODE MODULES

6.1 SET OF REGISTERS

5.2 SIMPLE MODULES

6.3 MODULES INVOLVING LIBRARY ROUTINES

5.4 MODULES IMPLYING DATA STRUCTURE SCANNING

219
219
219
219
222
223
225
226
230
231

236
236
236
242

248
248
248
248
261

254

266

257

258
259
261

264
264
266

269

273

277
277
278
278
280

5.4.1 DATA STRUCTURE SCANNING

5.4.2 THE ROUTINE COPYCELLS

5.4.3 TRANSLATION OF THE MODULE stwost

5.4.4 TRANSLATION OF OTHER MODULES ON DATA STRUCTURES

6. FURTHER REMARKS ON GARBAGE COLLECTION
6.1 THE INTERPRETATIVE METHOD
6.2 THE GARBAGE COLLECTOR WORKING SPACE
6.3 GARBAGE COLLECTION DURING DATA STRUCTURE HANDLING
6.4 MARKING ARRAYS WITH INTERSTICES
6.5 FACILITIES FOR STATISTICAL INFORMATION

.CONCLUSION
BIBLIOGRAPHY

APPENDIX 1 : ANOTHER SOLUTION FOR CONTROLLING THE WOST% GARBAGE
COLLECTION INFORMATION

APPENDIX 2 : SUMMARY OF THE SYNTAX

APPENDIX 3 : SUMMARY OF TOPST PROPERTIES

APPENDIX 4 : SUMMARY OF THE NOTATIONS

APPENDIX 5 : LIST OF INTERMEDIATE CODE INSTRUCTIONS

APPENDIX 6 : AN EXAMPLE OF COMPILATION

303

306

307
309
311
312
318
326

PART I : GENERAL PRINCIPLES

0. INTRODUCTION

A programming language is defined by means of a semantics and a syntax.

- the gsemantics ‘@efines the meaning of the programs of the language. It is based on
a number of primitive functions (actions) having parameters, delivering a result
and/or having some side-effects, and on z number of composition rules by which
the result of a function may be used as the parameter of another function.

- the syntax provides means for program representations. It defines a structure of
programa, reflecting both the primitive functions and the composition rules of
the semantics.

A compiler translates programs written in a given source language into programs
written in an object language and having the same meaning. Ultimately the object lan-
guage is the machine code. Generally, the transformation is performed in two steps
at least conceptually separated : the syntactic analysis and the translation proper.

0.1 BASIC CONCEPTS

The syntactic analysis is a program transformation by which the structure of
the source program is made explicit. We can distinguish three parts in the syntactic
analysis, namely :

- the lexical analysie by which atoms of information semantically significant in the
source language are detected,

- the context-free analysis by which the primitive functions of the source language
and their composition rules are made explicit, and

- the declaration handling by which the declared objects are connected to their decla-
ration.

Conceptually, the output of the syntactic analysis has the form of a tree in
which :

- the terminal nodes are the atoms delivered by the lexical analyzer. These atoms
may represent values (value denotations, identifiers) or they may just be source
language syntactic separators or key-words,

= nonterminal ‘nodes represent functions (actions) the parameters of which are the
values resulting from the subjacent nodes ; in turn, these functions may deliver
a value as their result, and 1

- the initial node is obviously the syntactic unit "perticular program".

The translation proper produces machine code. Elementary functions of, and va-
lues handled by machine codes are much more primitive than primitive functions of
high level languages and their parameters. The translation process has to decompose

the source functions and source values. Machine instructions are executed as indepen-

dent modules : the interface between them is determined by the sequence in which
they are elaborated and by the storage allocation scheme on which the program they
constitute is based. More concretely, the result of each instruction is stored in a
memory cell and it can be used by another instruction in which the access (address)
of the same memory cell is specified.

Roughly speaking, machine code generation for a given program is based on the
following informations : ‘
- the program tree resulting from the syntactic analysis,
- the semantics of the source functions as defined by the source language, and
- the semantics of the machine instructions as defined by the hardware.
The main task of the compiler reduces to decompose source functions into equiva-
lent sequences of machine instructions. Obviously, a storage allocation scheme must
first be designed in order to be able to take the composition rules of the source

language into account.

It is not required to produce machine code in one step ; our translation scheme
first produces an intermediate form of progrems called tntermediate code (IC). Among
other things, this permits to remain machine independent during a more significant
part of the translation process and hence to increase the compiler portability. We
propose an intermediate code consisting of the same primitive functions as the sour-
ce language, but provided with explicit parameters making it possible, these func-
tions to be considered separate self-contained modules. As it is the case for the
machine code, these modules are elaborated sequentially except when explicit breaks
of sequence appear. The composition rules of the source language are taken into ac-—
count through the sequential elaboration of the modules and the strategy of storage
allocation. In this respect, as opposed to the source language dealing with abstract
instances of values, the intermediate code deals with stored values characterized
by the static properties corresponding both to the abstract instances of values [1]
(mode ...) and to the memory locations where the values are stored (access ...). It
is those properties which are used as the parameters of the intermediate code
(object) instructions (ICI) ; more precisely, the parameters of an ICI consist of
one set of static (compile-time) properties for each parameter of the corresponding
source function and one set for the result of this function.

Coming back to our translation scheme, we cén say that intermediate code genera-
tion for a given program is based on the following information :
- the program tree resulting from the syntactic analysis,
- the semantics of the source functions, and
- the storage allocation scheme.

We see that the semantics of machine instructions has disappeared, only the sto-
rage all;cation can be influenced by the hardware. In fact, we only make two hypo-—

theses at the level of the intermediate code :

- the memory is an uninterrupted sequence of addressable units,
- there exists an indirect addressing mechanism.

Machine independent optimizations are performed at the level of the intermediate
code generation. In particular r
- run-time copies of values,

- run-time memory management, and
- dynamic checks
are minimized up to a great extent.

Moreover, precautions are taken in order to allow to retrieve machine dependent
optimizations in a further step ; such optimizations take care of :
- register allocation and
- possible hardware literal and/or display addressing.

Now, machine code generation can be based on the following :

- the intermediate code form of the programs,
- the semantics of the source functions, and
- the semantics of the machine code.

Note that each intermediate code instruction can be translated independently
into machine code which improves the compiler modulerity. This translation mainly
consists in decomposing source functions and data into machine instructions and
words (bytes) respectively. Only local optimizstions(peephole [16])at the interface
between ICI's will still be needed to get the final machine code program.

Gathering information to be able to translate a program efficiently and automa-
tically requires a non trivial static (compile-time) information management. The
method explained in this book has many similarities with the one described by Knuth
[6] , although it has been developed independently. We explain it using Knuth's ter-
minology .

Attributes are static properties attached to the tree nodes ; there are synthe—
tized and inherited attributes.

In our system, the synthetized attributes of a node are the static properties
(mode, access ...) of the value attached to the node, i.e. the value of a terminal
construction (denotaticn, identifier) or the value resulting from a function (non-—
terminal node).

These synthetized attributes are deduced from each other in a bottom-up way.

For a terminal node, they are obtained from the terminal construction itself (and
from its declaration in case of a declared object). For nonterminal nodes, they are
calculated by the process of static elaboration.

The static elaboration of a function is the process by which the static proper-
ties of the result of the function are derived from the static properties of its
parameters (i.e. the synthetized attributes of the subjacent nodes) and according
to the code generated for the translation of the function.

Again,in our system,inherited attributes of a node are attributes which are trans-

mitted in the tree in a top-down way along a path leading from the initial node to
the current node. -
Translating a function is based on the synthetized attributes of the parame-
ters of the function, and on the inherited attributes of the function itself. Moreo-
ver, the translation can also take into account all the functions associated to the
nodes situated on the path between the node of the current function and the initial
node ; this allows us to make previsions on what will happen to the result of that
function, and in some cases to generate better code. As we shall see in the next
gsection, a very simple and efficient automaton can be used to implement the above

principles.

Exemple 0.1
Source progrem :
x=axb+3

Syntactic tree : {the part of the tree used to translate 'x' is bold faced}

x

T .a b, 3
- - <

. 7 d o e P S
{int & ; int a=... ;. int b=... 3}
Intermediate code :
x (proc (int,int)int, access a, access b, access w)
+ (proc (int,int)int, access w, access 3, access wl)

:= (int, access x, access wl)

Machine code without local optimizations :

LDA access a
MPY access b
STA access w

LDA access w
ADA =3
STA access wl

LDA access wl
STA access X

L lation.

compt

tics of the program at different stages of the

eris

YEJO¥d NOIIVISNVHL

.
suotgezTWTQdo TBOOT-
sonTBA puB
SuOT3OoUNI S0anos Jo uorzrsodmodsg-

|

-

SISATYNY OILOVINAS

—_—

UOT}BOOTTB 9FBIOGG-
UOT}BIOQBTS OTFBIS-

BUTTPUBY UOTILBIBTOO(~
STSATBUB 99IJ-3X94UO0D—
sTsATBUB TBOIXST-

Charact

uoT3BIOqBTS TBIJUSNbas(Z)
pUB UOT3}BOOTT® 28BI038(|)
yInoJay3 paansus s0BIISFUT-

" £9882IppR
SUTYOBW 9IB YOTYM JO SI33
—omexed syl ‘sanpowm juapusdepur-

**+ 599£q “SPIOM = BIBD SATFTWIIJ
SUOTIONIFSUT = SUOTFOUNT SATFTWIII

Louspuadapul SUTYIBU-

uotyBIOQBTS TETjuUsnbas(g)
PUB UOT}BIOTTE wwunovmnpv
ySnoays paJnsus 20BIIFUL-

SONTBA PaJIO3s
Jo satgaadoad o13e3S

8J® Yoty Jo sIajameaed

ayy ‘senpom juspusdspur-

nq ‘oSenfusT
20JN0Ss 2y} S® BYBD pus
suotTqouny sAT3TWIXd aureg

UOT3BIBTD
-9p JXTayq puw s3oalqo
PaIBTO9p USIMFSQ SHUTIT-

9913 0T30BjUAS-~

: 3ToTTdX? 9peWm ST
2an3ona3s 0T3083ULS Iy

SO0T}
-usmwas oy3 JurgoaTIed
aIn3onI}s B SaUTJI] -

uotyejussaxdax
mweafoad I0J SUBS) -

xvauURs

soTna uoryrsodwo) -

8}BP SAT}TUWIX -
SUOTJOUNT SATFTWILI —

80313 UDUBS

3p0OD SUTYIBR

8pOO0 31BTIPSWISJUT

stsAT8us
o130B3uUAS ay3 JO 3Tnsay

s8enIusT 20anog

