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To Anja and to Iva



This seems to be a very elementary problem without

deeper meaning. However, one meets this task again

and again in the electric industry and in all kinds

of oscillation problems.

A short while ago, I found a rather elegant solution.

The reason why I am strongly drawn to such

approximation mathematics problems is not

the practical applicability of the solution,

but rather the fact that a very “economical”

solution is possible only when it is very “adequate”.

To obtain a solution in very few steps

means nearly always that one has found a way

that does justice to the inner nature of the problem.
CORNELIUS LANCZO0S in a letter to Albert Einstein on March 9, 1947.

Your remark on the importance of
adapted approximation methods makes very
good sense to me, and I am convinced
that this is a fruitful mathematical aspect,
and not just a utilitarian one.
EINSTEIN’S reply to Lanczos on March 18, 19471,

1. We thank the Albert Einstein Archives, The Hebrew University of Jerusalem, Israel, which holds
the copyrights on Einstein’s letters, for giving us access to the correspondence between Lanczos and
Einstein. The two corresponded in German, and the above are our translations of the following ori-
ginal quotes:

“Das scheint ja ein reichlich elementares Problem ohne tiefere Bedeutung zu sein. Doch stosst man
in der elektrischen Industrie und bei allen méglichen Schwingungsproblemen immer wieder auf
diese Aufgabe. Vor kurzem ist mir eine recht elegante Losung gegliickt. Der Grund weshalb mich
solche Probleme der Approximationsmathik [spelling error by Lanczos; most likely he meant to
write “Approximationsmathematik”] stark anziehen, ist nicht die praktische Verwendbarkeit der
Losung, sondern vielmehr der Umstand, dass eine stark “6konomische” Losung nur méglich ist,
wenn sie auch stark “adequat” ist. Mit wenig Schritten zum Resultat zu kommen bedeutet fast
immer, dass man einen Weg gefunden hat, der dem inneren Wesen des Problems gerecht wird.”
(Lanczos to Einstein, Albert Einstein Archives document number 15-313.)

“Ihre Bemerkung iiber die Bedeutung angepasster Approximations-Methoden leuchtet mir sehr ein,
und ich bin iiberzeugt, dass dies ein fruchtbarer mathematischer Gesichtspunkt ist, nicht nur ein
utilitaristischer,” (Einstein to Lanczos, Albert Einstein Archives document number 15-318.)



PREFACE

Quite frequently in life, the most elegant solution to a problem also turns out to be
the most efficient one for practical purposes. This heuristical observation certainly
applies to Krylov subspace methods. The algorithms devised by Magnus Hestenes,
Eduard Stiefel, Cornelius Lanczos, and others in the early 1950s for iteratively solv-
ing large and sparse linear algebraic systems and eigenvalue problems can hardly be
more elegant and aesthetically pleasing. Yet, these algorithms and their numerous
later variants and extensions are nowadays used widely and successfully through-
out science and engineering. Because of their overwhelming success in applications,
Krylov subspace methods are counted among the “Top 10 Algorithms’ of the 20th
century [116, 140].

Not surprisingly, several first-rate books describing Krylov subspace methods
are available. They have been written by excellent communicators and leading
researchers in the field, including Bernd Fischer [183] (republished by SIAM as
a ‘Classics in Applied Mathematics’ title in 2011), Anne Greenbaum [272], Gérard
Meurant [452, 453], Yousef Saad [543], and Henk van der Vorst [636]. Last but
not least we mention the closely related book by Gene Golub and Gérard Meurant
[246]. These books, as well as the other books and most survey papers on the
subject we are aware of, reflect the current state-of-the-art, which is the outcome
of explosive algorithmic developments over the last few decades. Such develop-
ments were necessary because of tremendous challenges raised by an ever growing
variety of application problems. For many years, investigations on how to solve
problems computationally and the derivation of new methods and their algorithmic
realisations have dominated the analysis of existing approaches.

Our aim with this book is to complement the existing literature by focusing
on mathematical fundamentals of Krylov subspace methods rather than their
algorithmic details, and on addressing the why more than the how. In the quote
given above, Lanczos announces to Einstein that he has found a new elegant
algorithm (he refers to his nowadays classical method for computing eigenvalue
approximations) and, more importantly, he explains his main motivation for work-
ing on iterative methods. He is attracted to them because they can only be made
to work efficiently when they uncover a deeper truth, namely the ‘inner nature of
the problem’. The utilitarian viewpoint of practical applicability is secondary to
him, and apparently to Einstein as well, who in his answer to Lanczos points out
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the ‘fruitful mathematical aspect’ involved in Lanczos’ thinking. In our book we try
to explore precisely this aspect, which in the past has been overshadowed by the
algorithmic view.

In the process of writing we went back to the early papers by Krylov (1931),
Gantmacher (1934), Lanczos (1950 and 1952), Hestenes and Stiefel (1952), and
others from that period. These authors presented many close relationships of their
methods with mathematical concepts beyond the realm of what is known today as
‘matrix computations’. Examples include quadrature methods, orthogonal polyno-
mials, continued fractions, moments, projections, and invariant subspaces. Reading
these original works was a fascinating experience.

Our feeling is nicely expressed by the following quote from the German
mathematician Eduard Study (1862-1930): ‘Mathematics is neither the art of cal-
culation nor the art of avoiding calculations. Mathematics, however, entails the art
of avoiding superfluous calculations and conducting the necessary ones skilfully.
In this respect one could have learned from the older authors.” [601, p. 4] (our
translation). The fact that reading older authors is not just a matter of studying
history has also been stressed by the English writer Joseph Rudyard Kipling (1865-
1936), author of The Jungle Book and Nobel Prize winner for literature in 1907,
who wrote in his essay “The Uses of Reading’ (1928) that ‘it is only when one
reads what men wrote long ago that one realises how absolutely modern the best of
the old things are.” Lanczos formulated a similar point of view even more strongly
in his essay ‘Why Mathematics?’ from 1967: ‘But to hail our times as the origina-
tor of an entirely new science, which need not bother with the past and has the
right to construct everything from scratch, betrays a dangerous short-sightedness
which can lead to a dissolution of mathematical research into an empty play with
words.’

Returning back to the original sources led us to examine a wide range of areas
and their interconnections, and to study many results developed in the 19th and
the early 20th centuries. Examples are such classics as continued fractions with their
relationship to orthogonal polynomials, quadrature and minimal partial realisation
in the works of Gauss (1814), Jacobi (1826), Christoffel (1857, 1858), Chebyshev
(1855, 1859), Markov (1884), Stieltjes (1884, 1894), and many others. Further
classical results we looked at and include in this book are Cauchy’s interlacing
theorem (1829), Jacobi’s reduction to tridiagonal form (1848), Jordan’s canonical
form (1870), Stieltjes’ moment problem (1894), and the Riemann-Stieltjes integ-
ral representation of operators by von Neumann (1927, 1932) going back to Hilbert
(1906, 1912), who praised the work of Stieltjes.

In order to make the book as self-contained as possible, we have included com-
plete proofs of many stated results. In addition, we have tried to the best of our
abilities to give references to the original sources. Throughout the book we have
used framed boxes to highlight points in the development that we consider parti-
cularly important. In these boxes we usually skip some technical details in order to
focus on the main message of the corresponding mathematical results or questions.

To keep the project manageable for ourselves, we have focused on methods for
solving linear algebraic systems, and we left aside the equally interesting area of
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Krylov subspace based eigenvalue solvers. However, many results presented in this
book are relevant for such solvers as well, since they are usually based on the same
principles as the methods for linear algebraic systems (with the Lanczos and Arnoldi
algorithms as the basic building blocks).

As indicated above, we strongly believe that a mathematical theory can be better
understood when it is viewed in its historical context. We therefore discuss the ori-
ginal developments in extensive historical notes. In our opinion, the knowledge of
early developments can also help in understanding very recent computational devel-
opments. The outcome of the historically motivated approach therefore is practical
and readily applicable. It shows what can and what cannot be expected from Krylov
subspace methods foday. Moreover, it challenges some common ‘modern’ views
that have been articulated in the justification of ‘practical’, though mathematically
questionable, approaches.

When solving real-world and large-scale problems, Krylov subspace methods
must always be combined with acceleration techniques. The goal is to improve the
behaviour of Krylov subspace methods, and the techniques are (somewhat impre-
cisely) called ‘preconditioning’. Construction of preconditioners is usually based
on some specific properties of the real-world problem or on empirical (which does
not mean simple!) observations and heuristics. Successful application of precon-
ditioning often requires an extensive and deep theoretical knowledge from many
areas combined with skilful implementation of graph-theoretical ideas. Therefore
it is sometimes viewed as ‘a combination of art and science’. In this book we do
not explicitly consider preconditioning techniques. (They are studied, for example,
in [272, Part II], [452, Chapters 8-10], and [ 543, Chapters 9-14]; see also the sur-
vey [54].) Nevertheless, we believe that our book also contributes to the area of pre-
conditioning. Since most of the presented analysis is applicable to preconditioned
systems, it applies, assuming exact arithmetic, to preconditioned Krylov subspace
methods. Moreover, many results can be modified in order to describe finite pre-
cision computations with preconditioning. Most important of all, we believe that
a better understanding of the fundamentals of Krylov subspace methods is a pre-
requisite for establishing an analytic base on which a theory of preconditioning can
be developed.

OVERVIEW OF THE BOOK

The book contains five chapters. The first chapter, Introduction, introduces the gen-
eral setting of the book and the context of solving a real-world problem via the
stages of modelling, discretisation, and computation. We also recall the richness
of ideas related to the above mentioned original works of Hestenes, Stiefel, and
Lanczos. Many of the mathematical topics addressed in the related works are closely
examined in Chapters 2—4, which form the theoretical core of our book. In these
chapters we consider Krylov subspace methods from different points of view, and
we make links between these viewpoints.

Chapter 2, Krylov Subspace Methods, focuses on the idea of projections. The
so-called ‘finite termination property’ then naturally leads to the introduction of the
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Krylov subspaces. We characterise the major methods CG, MINRES, GMRES, and
SYMMLQ in terms of their projection properties. Using these properties and the
standard approaches for generating Krylov subspace bases (namely the Lanczos and
Arnoldi algorithms), we derive algorithmic descriptions of some Krylov subspace
methods.

In Chapter 3, Matching Moments and Model Reduction View, we consider the ideas
of moments and model reduction, starting from (a simplified version of) Stieltjes’
classical moment problem. We discuss important related concepts, ranging from
the Gauss—Christoffel quadrature and orthogonal polynomials to continued frac-
tions. Through Jacobi matrices we find the matrix computations analogies in Krylov
subspace methods, and we characterise the methods in terms of their moment
matching properties.

The central concept of Chapter 4, Short Recurrences for Generating Orthogonal
Krylov Subspace Bases, is the invariant subspace. We discuss how the length of a
Krylov sequence is related to the Jordan canonical form of the given matrix. The
main goal of the chapter is to explain when a Krylov sequence can be orthogonal-
ised with a short recurrence. The main result in this context motivates the general
distinction in the area of Krylov subspace methods between methods for Hermitian
and non-Hermitian matrices.

Some of the general ideas and relationships presented in the first four chapters
are illustrated in Chapter S, Cost of Computations Using Krylov Subspace Methods.
The chapter starts with a general discussion of the concept of computational cost
and related issues, including the difference between direct and iterative methods,
particular computations and complexity, and the concept of convergence in general.
We then focus on the major methods CG and GMRES, and analyse their exact and
finite precision behaviour. We summarise and present many results published previ-
ously (scattered throughout many papers), while making no claim for completeness
of coverage. Some results and views presented here were not previously published,
or were just briefly mentioned without an extensive treatment. Moreover, we feel
that there is a need to pose and to investigate new questions in relation to applica-
tion areas. For example, the questions of measuring the error and evaluating the cost
when solving practical problems with Krylov subspace methods cannot be resolved,
in our opinion, within the field of matrix computations alone. The fact that they
need a much wider context is one of the challenges that is formulated in Chapter S.
The chapter ends with a discussion of some open questions, omitted topics, and an
outlook.

Summing up, our goal is neither to give a classification of all existing Krylov sub-
space methods, nor to review or reference all existing approaches. Rather, we want
to identify the major ideas and thoroughly analyse the resulting major methods,
with algorithmic details presented only when they are relevant for the exposition.
(For additional algorithmic descriptions we give appropriate references.) We thus
attempt to be analytic rather than algorithmic and focused rather than encyclopedic.
We hope that the readers of this book might find this approach stimulating for fur-
ther analytic investigations of Krylov subspace methods as well as for using these
methods more effectively in the future.
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